USSR

UDC 621.396.677

YERUKHIMOVICH, YU. A.

"Scattering of a Spherical Wave by Truncated Bodies of Revolution"

Moscow, V sb. Antenny (Antennas -- collection of works), "Svyaz'", 1969, Vol 6, pp 17-49 (from RZh-Radiotekhnika, No 4, 1970, Abstract No μΒμ)

Translation: The field of scattering by truncated bodies of revolution is analyzed where the bodies are formed by second order curves during irradiation of these bodies from a single focus by a spherical wave source. This was done within the scope of approximation physical optics. The curvilinear coordinate method is used in the analysis. The resulting system of formulas makes it possible to calculate the field in the entire space, including transition zones, within the accepted approximation. The results support the principle of locality. With the exception of direction near the axis of symmetry of a body, the field of scattering

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

USSR

YERUKHIMOVICH, YU. A., Antenny, "Svyaz'", 1969, Vol 6, pp 17-49

has the same kind of phase structure as a field which has been set up by source rays locally reflected from the points of a mirror surface. It is noted that the results of this study can be used for calculating the field of scattering from a mirror antenna or re-emitters of corresponding shape. Original article: 16 illustrations and 8 bibliographic entries. V.B.

2/2

USSR

UDC 621.396.677.833.2(088.8)

YERUKHIMOVICH, Yu. A., BOZUYEV, B.

"Antenna"

USSR Author's Certificate No 280474, filed 3 July 68, published 26 Jan 71 (from RZh-Radiotekhnika, No 9, Sep 1971, Abstract No 9B57P)

Translation: An antenna is proposed for terrestrial or cosmic radio communication. The basic mirror of the antenna has a circular edge on which is placed a cylindrical attachment [nasadka] of the same diameter. The attachment has a height equal to the average wave length (λ_{av}) . The external edge of the attachment is made in the form of an even number of spiral cuts with a forward or counter direction of the spirals. These media are offset in height, one with regard to another, by $\lambda_{av}/2$ and are cut through at the radius of the attachment to a height of $\lambda_{av}/2$. Edge waves [krayevyye volny] from the edge of the mirror which is excited by a source proceed to an observation point occurring in the far zone on the symmetry axis of the system or close to it, in the rear half-space. The mirror is excited by an in-phase source. All points of the spirally cut attachment dissipate energy in various directions, i.e., practically diffuse scattering of energy results. In addition, compensation is accomplished of fields incoming to the observation 1/2

USSR

YERUKHIMOVICH, Yu. A., BOZUYEV, B., <u>USSR</u> Author's Certificate No 280574, filed 3 July 68, published 26 Jan 71 (from <u>RZh--Radiotekhnika</u>, No 9, Sep 1971, Abstract No 9857P)

point from each pair of diametrically opposite points of the attachment. Consequently, the total effect during rearward radiation will be considerably weakened. An increase of the number of cuts increases the symmetry of the antenna. 2 ill. V. S.

USSR

UDC: None

YERUKHIMOVICH, Yu. A., ZIMIN, S. N., and METRIKIN, A. A.

"Two-Reflector Antenna for Radio Relay Communications"

Moscow, Antenny, No. 7, 1970, pp 3-21

Abstract: The results of experimental tests on a new double reflector antenna with a shifted focal axis, designed according to recommendations of the International Radio Consultative Committee (MKKR) for radio relay lines, are presented and analyzed. A discussion is given of the basic system and characteristics of antennas of the shifted focal axis type. An expression is given for the gain factor, and the directional diagram of the antenna is plotted. Also plotted from the latter are curves showing the variation of the integral energy distribution in the E and H planes with respect to the antenna axis angle. These curves show that, within the limits of the main lobe (100), the radiated energy in the H plane amounts to 78.4% of the total energy radiated, while in the E plane the radiated energy amounts to 56.8%. Cross-sectional diagrams of the antenna showing its structure and dimensions are given, and photographs of an elliptical reflector and the antenna itself are shown. The authors assert that the antenna has high electrical parameters despite the simplicity of its construction, and that it is

1/2

USSR

YERUKHIMOVICH, Yu. A., et al, Antenny, No. 7, 1970, pp 3-21

valuable for satellite as well as earthbound radio relay communication. They conclude by thanking Engineer Yu. B. Buzuyev, who conducted the experimental work.

2/2

- 35 -

USSR

UDC: 621.396.677.73

YERUKHIMOVICH, Yu. A., ZIMIN, S. N.

"An Antenna"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 32, 1970, Soviet Patent No 284063, Class 21, filed 6 May 66, p 30

Abstract: This Author's Certificate introduces: 1. An antenna made in the form of a circular horn radiator and a reflector. As a distinguishing feature of the patent, the antenna is designed to produce a circular radiation pattern in one plane and a narrow pattern in another plane over a broad frequency band. To this end, the reflector is made in the form of a surface generated by rotating part of a parabola cut by a straight line passing through its focus, where the vertex of the reflector is located. The intersecting straight line is the axis of rotation of the given part of the parabola, and coincides with the axis of the reflector. 2. A modification of this antenna distinguished by the fact that polarization independent of the direction of emission is ensured by installing a conductor along the reflector axis with one end connected to the inner conductor of the coaxial antenna input, while the other end is connected to the vertex of the reflector.

1/1

...10---

Antennas

USSR

UDC: 621.396.677.833

YERUKHIMOVICH, Yu. A., BUZUYEV, Yu. B.

"An Antenna"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 28, 1970, Soviet Patent No 280574, Class 21, filed 3 Jul 68, p 48

Abstract: This Author's Certificate introduces an antenna made in the form of a paraboloid with a cylindrical attachment on the periphery and a radiator. As a distinguishing feature of the patent, emission behind the antenna is reduced by making the outer edge of the cylindrical part in the form of an even number of spiral cuts with oppositely directed spirals. The cuts are spaced by half the mean wavelength.

1/1

USSR

UDC (678.84+678.746.22-139).002.612

DAVYTOVA, V. P., YERUNOVA, G. G., and YEREMINA, L. K., All-Union Scientific Research Institute of Synthetic Rubber imeni S. V. Lebedev

"Graft Copolymers of Siloxane Rubber and Acrylonitrile"

Moscow, Kauchuk i Rezina, No 8, 1970, pp 1-3

Abstract: A study was made of the composition and properties of graft copolymers of dimethylvinylsiloxane rubber and acrylonitrile, synthesized with the use of different solvents in the presence of a radical polymerization initiator. It was found that the structure of the graft copolymer varies according to the solvent in which the grafting was performed. The best technological properties are found in graft copolymers obtained in gasoline, cyclohexane or n-heptane. The glass transition temperature is 115 \(\pm\) 121.50 c, which is not very such different from the glass transition temperature of dimethylsiloxane rubber. Vulcanizates of the graft copolymers are analogous to siloxane rubbers in frost and heat resistance. They are considerably superior to rubbers of SKN-40 in heat aging resistance, but inferior to siloxane rubbers. In oil resistance, rubbers of the graft copolymers take an intermediate position between SKN-40 and SKTV rubbers. Graft copolymers containing \(\pi\) 40 percent acrylonitrile and filled with zerosil (20 parts by

USSR
DAVYDOVA, V. P., et al., Kauchuk i Rezina, No 8, 1970, pp 1-3
veight) provide optimal oil resistance data.
L. P. TKACHEVA and T. F. DUNYASHKINA took part in the experimental work.

USSR

UDO 621.582.002

મદમાદ્રાજ્યના મામજાનિય સંભાગ ભાષા (સાહા આંત્રાજ્યાના ભાગમાં) મામલ્જામાં મામલ્જામાં આ મહારાષ્ટ્ર મહારાષ્ટ્ર મામ

YEFIMOV, YE.A., YERUSALINCHIK I.G., OSIPENKOVA, E.L., SOMOLOVA, G.P.

*Electrodeposition Of Copper In Order To Optain Volume Leads Of Semiconductor Devices

Elektron. tekhniks. Nauch.-tekhn.sb. Poluprovodn.pribory (Electronics Technology. Scientific-Technical Collection. Semiconductor Devices), 1970, Issue 6(56), pp 89-92 (from RZh-Elektronika i yeye primeneniye, No 10, October 1971, Abstract No 108488)

Translation: Preceding electrochemical deposition of copper volume leads on a sputtered 0.5-[?] thick Gu layer with masking by "385" photoresist, processing of the substrate in concentrated HCl during 15-20 sec at a temperature of ing of the substrate in concentrated HCl during 15-20 sec at a temperature of 20 plus or minus 2° C is optimum. The electrolyte composition 200 g/l GuSO4, 20 plus or minus 2° C is optimum. The electrolyte composition 200 g/l GuSO4, 50 g/l H₂SO4; 0.04 g/l GS(NH₂)₂; 0.04 g/l NaCl gives the greatest increase of the diameter of the local deposition of Gu. With a 20° C temperature of the solution, the current density is 0.1 a/cm², the height of the deposited columns of Cu not greater than 40 micrometer, the diameter of the column during the time of deposition (50 min) is increased by 5-10 micrometer. Cylindrical the time of deposition (50 min) is increased by 5-10 micrometer. Cylindrical leads of proper form are obtained with horizontal inversion of the working wafer into the electrolyte. Correction of the electrolyte by addition of thicures is necessary in the operating process. The assumed mechanism of chemical and electrochemical reactions occurring during electrodeposition of Cu is described. I ill. 4 ref. I.M.

Acc. Nr:

#0047252

Ref. Code:

PRIMARY SOURCE:

Urologiya i Nefrologiya, 1970, Nr

PP 51-53

ROENTGENOLOGICAL EXAMINATION OF THE PROSTATE IN HYPOGONADISM

A. I. Bukhman, B. Sh. Kogan, I. V. Golubeva, G.I. Eryamkin

Summary

Materials of examination of 23 patients with various diseases were subjected to thorough clinico-roentgenological analysis. Male hypogonadism was present in 15 of these cases. X-ray contrast and noncontrast prostatography serves as one of the important methods of improved diagnosis of male hypogonadism. Prostatography offers a possibility of detecting the presence, the shape and the size of the prostate gland, and is of expedience in various pathological processes developing in this organ.

1//

REEL/FRAME 19790759 DI 2

UNCLASSIFIED PROCESSING DATE-2000V70 TITLE -- MUDIFIED STEROIDS. V. PMR SPECTRA OF SULASODAME DERIVATIVES -U-AUTHUR-(05)-YERYEV, V.P., TULSTIKOV, G.A., VASILYUK, S.M., ROMACHENKO, G.N., GORYAYEV, M.I. COUNTRY OF INFO--USSR SOURCE-- IZV. AKAD. NAUK KAZ. SSR, SER. KHIM. 1970, 20(2), 33-9 DATE PUBLISHED ----- 70 SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES, CHEMISTRY TOPIC TAGS-HORMONE, PROTON RESONANCE, PROTON SPECTRUM CENTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0360/70/020/002/0033/0039

PRUXY REEL/FRAME--3004/0760

CIRC ACCESSION NO--APO131355 UNGLASSIFIED

> APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

2/2 015	UNCLASSIFIED	PROCESSING DATE	——20 NOV 7 0
CIRC ACCESSION NOAPO131355 ABSTRACT/EXTRACT(U) GP-0-			
WEBETA SCLASGDANES WERE LICCAT	TED IN THEIR PMR SPE	CTRA. THE RULE O	ie i
AUDITIVITY OF CHEM. SHIFTS	OF ANGULAR ME GROUP	S HOLOS IN THIS C	LASS OF
COMPOS. AS IN THE CASE OF A	MURUSI ANES.	FACILITY: INST.	KHIM.
·			
			•
유명하는 사용하는 사용하는 사용하는 경우 기계를 받는 것이 되었다. 1982년 - 1982년 - 1982년 1982년 - 1982년			
が 発音が あれたでは、100kg (2000年) 最高が100kg (2000年) - 1000年 (2000年)			
경조 경기 (1986년 1985년 - 1987년 - 1 경조 전 1987년 - 1			
			•
			· ·
경기 기업			
######################################			
프로그램			
수 있다. 전 통기 : : : : : : : : : : : : : : : : : :	LASSIFIED		
	LAGUETTE		

USSR

UDC 577.15

KOMOLOVA, G. S., YERYCIN G. D., VASIL'YEVA, T. B., and YEGOROV, I. A., Institute of Biochemistry imeni A. N. Bakh, Academy of Sciences USSR, Moscow

"Effect of a Constant Magnetic Field of High Intensity on the Enzymatic Hydrolysis of Nucleic Acids"

Moscow, Doklady Akademii Nauk SSSR, Vol 204, No 4, 1972, pp 995-997

Abstract: DNA (S \sim 25) and RNA were subjected to the action of DNA-ase and RNA-ase respectively at 25°C for 1.5 hr under the effect of a magnetic field. The reaction mixtures were circulated continuously through a tube. The change in the enzyme activity due to the action of the magnetic field was determined spectrophotometrically on the basis of the increase of extinction in the acid-soluble fraction at $\lambda = 260$ mm. The concentration of the enzyme at which the reaction began was 0.6 %/ml (enzyme - substrate ratio 1:5000) for RNA-ase and 3 %/ml for DNA-ase (enzyme - substrate ratio 1:500), respectively. In the experiments with DNA - DNA-ase, the activity of DNA-ase was increased as a result of the action of the magnetic field by 30, 16, and 0% at intensities of the magnetic field equal to 3.2 × 10³, 1.2 × 10³, and 0.8 × 10³ Oe, respectively. The effect of the magnetic field can be ascribed to reorientation of DNA molecules. The activity of RNA-ase was not yet increased at 3.2 × 10³ Oe. One may assume that much higher intensities of the magnetic

USSR

KOMOLOVA, G. S., et al., Doklady Akademii Nauk SSSR, Vol 204, No 4, 1972, pp 995-997

field will be required to exert an effect on the RNA - RNA-ase reaction. (Submitted by Academician A. I. Oparin, 19 Jul 71).

2/2

- 7 -

USSR

UDC: 8.74

SHABANOV-KUSHNARENKO, Yu. P., YERYOMIN G.S., KACHKO, Ye. G., MARCHENKO, Yu. S., PCHELINOV, V. P., TISHCHENKO, V. V.

"On the Problem of Axiomatic Construction of Mathematical Models"

Probl. bioniki. Resp. mezhved. temat. nauch.-tekhn. sb. (Problems of Bionics. Republic Interdepartmental Thematic Scientific and Technical Collection), 1971, vyp. 6, pp 70-74 (from RZh-Kibernetika, No 1, Jan 72, Abstract No 1V1074)

Translation: Mathematical methods are proposed for describing objects which have known input and output signals. Authors' abstract.

1/1

58 -

TLEINDOLE DEPIVATIVES. V. SY	INTHESIS AND TUBERCULO	STATIC ACTIVI	TY OF
INDOLE 3. ALKANOIC ACIDS -U- ITHOR-(05)-AVRAMENKO, V.G., PER			1
CO.O., YERYSHEV, B.YA.		500-2	
OURCEKHIMFARM. ZH. 1970, 4	(3), 15-18		
ATE PUBLISHED70			
UBJECT AREASBIOLOGICAL AND M			
OPIC TAGSINDOLE DERIVATIVE, (STRUCTURE, TUBERCULOSIS	ORGANIC ACID, CHEMICA	L SYNTHESIS, M	OLECULAR
			:
ONTROL MARKINGNO RESTRICTION	S _i ''		
COMENT CLASSUNCLASSIFIED ROXY REEL/FRAME1998/0361	STEP NOUR/0450/7	0/004/003/0015	/0018
IRC ACCESSION NOAP0121049 UNCLA	SSIFIED		
	Air and the same of the same of the	ascardona suntidos fado	

MOLE OMEGA CHEGRO OR B	ROMOALKAN	INACI. A Necarboxyi	MIXI. UE	10.05 MULE 0.4 MOLE:	: INDULE, 0.	1 30
HISUBZ O WAS PLACED IN	AN AUTOC	CLAVE . TEN	MP. RAISE	D TO 240-5	ODEGREES	
DURING 2-2.5 HR AND KE ESTERS AND HYDRAZIDES.	THE TUE	AT THIS T	ATIC ACTIV	ALLY DE T	AND THEIR	· · · · · · · · · · · · · · · · · · ·
HYDRAZIDES IS GIVEN.	F#	ACILITY:	HOSK. FHI	MTEKHNO	L. INST. IN	4.
MENDELEEVA, MOSCON, US	SR.					· · · · · · · · · · · · · · · · · · ·
	•					
	•					
		•				
불량 보호 보고 있는 것이다. 중요한 기사 보고 있는 것이다.	•					
	•				:	
						· · · · · · · · · · · · · · · · · · ·
			The Paris of			

USSR

UDC 615.281.221.1:547.757

AVRAMENKO, V. G., PERSHIN, G. N., MUSHULOV, P. I., MAKEYEVA O O CHARLES B. YA., SHAGALOV, L. B., SUVOROV, N. N., MOSGOW Instituto of Chemical Technology imeni D. I. Mendeleyev, Moscow, Ministry of Higher and Secondary Specialized Education RSFSR; All-Union Scientific Research Chemical and Pharmaceutical Institute imeni S. Ordznonikidze, Moscow, Ministry of Health USSR

"Indole Derivatives. Part V. Synthesis and Tuberculostatic Activity of Omega-Indolyl-3-Alkannic Acids"

Moscow, Khimiko-Farmatsevticheskiy Zhurnal, Vol IV, No 3, 70, pp. 15-18

Abstract: Indolylalkannic acids have been the subject of numerous studies for quite some time. Most of this research, however, has been devoted to lower members of the series of indolylalkannic acids, namely indolyl-3-acetic, \$\textit{B}\$-indolyl-3-propionic and \$\textit{Y}\$-indolyl-3-butyric acids. It is expected that some of these compounds may possess physiological activity. Of particular interest is \$\textit{W}\$-indolyl-3-butyric undecanoic acid, which is the indole analog of hydnocarpic acid. Indole alkylation with haloalkannic acids shows considerable promise. Earlier research describes the synthesis of heteroauxin from indole 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

USSR

AVRAMENKO, V. G., et al, Moscow, Khimiko-Farmatsevticheskiy Zhurnal, Vol IV, No 3, 70, pp 15-18

and chloracetic acid. In recent years ω -chloroalkannic acids with an odd number of carbon atoms have become readily available. Indele was alkylated with ω -haloalkannic acids in a strongly alkaline medium by heating in an autoclave; $2\mu_0 = 250^{\circ}$ C, 18 = 20 atm pressure and a 1:2 indole-to-haloalkannic acid ratio appear to be the optimum reaction conditions. The yield of ω -indoly-3-alkannic acids was $\mu_2 = 90\%$. The tuberculostatic activity was determined in vitro in a Soton medium with and without blood serum of a horse. Use was made of human microbacteria Academia and H37Rv. The compounds were found to have tuberculostatic activity.

2/2

.-26-..

1/2 020 UNCLASSIFIED TITLE-CATALYSTS FOR THE SYNTHESIS OF UNSATURATED POLYESTERS -U-PROCESSING DATE-300CTTO

AUTHOR-1041-SKUBIN, V.K., KUTEPOV, D.F., VALGIN, A.D., YERYSHEV, B.YA.

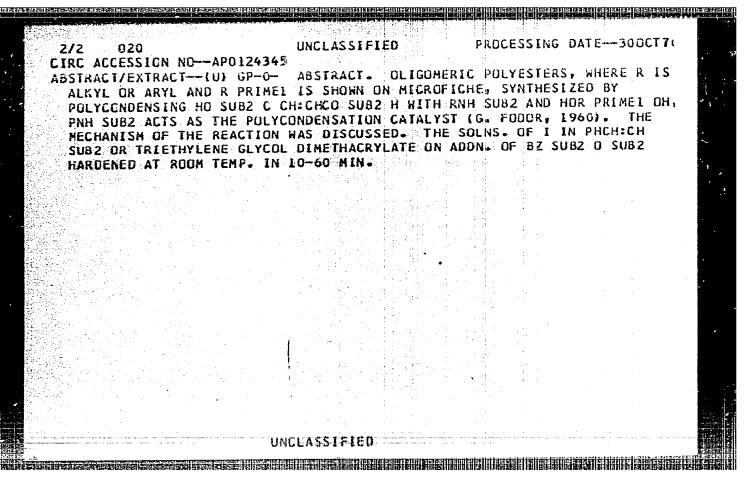
COUNTRY OF INFO-USSR

SOURCE--VYSOKOMCL. SOEDIN., SER. B 1970, 12(3), 171-3

DATE PUBLISHED 70

SUBJECT AREAS-MATERIALS, CHEMISTRY

TOPIC TAGS-CATALYTIC ORGANIC SYNTHESIS, POLYESTER RESIN, OLIGOMER, POLYCONDENSATION, AMINE, HYDROXYL RADICAL, CHENICAL REACTION MECHANISM,


CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAHE-2000/0673

STEP NO----UR/0460/70/012/003/01/11/01/3

CIRC ACCESSION NO--APO124345

UNCLASSIFIED

TITLE--STUDY OF THE SPECTRA OF GASEOUS MOLECULAR LASER MIXTURES -U-

UNCLASSIFIED

PROCESSING DATE--300CT70

AUTHOR-(02)-IVANOV, V.N., YERYBASHEVA, L.F.

COUNTRY OF INFO--USSR

SOURCE-OPTIKA I SPEKTROSKOPIIA, VOL. 28, MAR. 1970, P. 535-539

DATE PUBLISHED ---- MAR 70

SUBJECT AREAS--PHYSICS

TOPIC TAGS-GAS LASER, CARBON DIOXIDE LASER, LASER RADIATION SPECTRUM, GAS DISCHARGE, HYDROGEN, HELIUM, LINE INTENSITY

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/1507

STEP NO--UR/0051/70/028/000/0535/0539

CIRC ACCESSION NO--APOII8494

UNCLASSIFIED

ABSTRACT/EXTRACT(U) GP-O- ABSTRACT. QUALITATIVE STUDY OF THE KINETIC CHANGES IN THE INTENSITY OF SPECTRAL LINES AND BANDS OF INDIVIDUAL MOLECULAR GASES AND MIXTURES USUALLY USED IN CARBON DIOXIDE LASERS. A SIGNIFICANT CHANGE IN THE SPECTRAL COMPOSITION OF THE RADIATION OF THE CARBON DIOXIDE-HELIUM SYSTEM DURING A GAS DISCHARGE IS OBSERVED. IT IS CONCLUDED THAT THIS CHANGE IS LARGELY DUE TO THE PRESENCE OF HYDROGEN AND HYDROGEN CONTAINING COMPLEXES IN THE HELIUM COMPONENT OF THE MIXTURE.	
AND HYDROGEN CONTAINING COMPLEXES IN THE HELIUM COMPONENT OF THE	
	3
양 양성 문제 사용 이 시간 이 없는 그는 사람들은 사람들이 되었습니다. 그 사람들은 그를 가는 것이 되었습니다.	
활동으로 하는 사람들이 되었다. 그는 사람들이 되었다. 연공화하다. 그는 사람들이 되었다.	:
#### 하는 사람이 하는 것이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
UNCLASSIFIED	

ANO 026670

AUTHOR__

YERYUKHIN ... A. , LIEUTENANT COLONEL

UR 9008

TITLE--

VETERANS OF THE ACADEMY MEET

NEWSPAPER --

KRASNAYA ZVESDA, MARCH 8, 1970, P 1, COL 3

ABSTRACT— THE 1940 GRADUATES OF THE COMMAND SCHOOL OF THE AIR FORCE ENGINEERING ACADEMY IMENI ZHUKOVSKIY MET ON MARCH 7, 1970. THE MEETING WAS ATTENDED BY S. N. GRECHKO, GENERAL-COLONEL OF AVIATION /SMCLN/N. A. NAUMOV, GENERAL-LIEUTENANT OF AVIATION /SMCLN/ MARSHAL OF AVIA-/SMCLN/ GENERAL-COLONEL OF AVIATION, HEAD OF A CHAIR AT THE MILITARY ACADEMY OF THE GENERAL STAFF, N. G. SELEZNEV //SMCLN/ GENERAL-MAJOR FORCE ENGINEERING -TECHNICAL SERVICE, ACTING COMMANDANT OF THE AIR

30

19661719

USSR -

UDC 619:616.981.42-084.47

ZHOVANIK, P. N., MAYBORODA, A. A., and YERZH, N. I., Ukrainian Scientific Research Institute of Experimental Veterinary Medicine

"Effectiveness of Nonagglutinogenic Vaccine Against Brucellosis"

Moscow, Veterinariya, No 6, Jun 73, pp 50-52

Abstract: In connection with a study of mutations of Brucella microorganisms, strains of nonagglutinogenic mutants were selected which had lowered virulence, exhibited pronounced immunogenicity, and did not stimulate the formation of antibodies that reacted with the ordinary brucellosis antigen. One of these strains, Br. abortus V-8, which was found to retain its cultural and biological characteristics for about 10 yrs, was used for the preparation of an antibrucellosis vaccine. Good results were obtained in field tests by applying this vaccine for the immunization of cattle.

1/1

Veterinary Medicine

USSR

UDC 619:616.981.42-084.47:616-092.4/.9

YAZYKOVA, K. N., Candidate of Biological Sciences, and N. I. YERZ, Candidate of Veterinary Sciences, Ukrainian Scientific Research Institute of Experimental Veterinary Medicine

"Changes in Organs Following Vaccination with Br. abortus B-8"

Moscow, Veterinariya, No 4, 1973, pp 41-42

Abstract: Histopathologic studies were conducted on calves immunized with Br. abortus B-8. The 6-8 month-old calves were injected subcutaneously in the neck region with 5 ml of the vaccine (100 x 109 cells per 1 ml), and 3-5 animals were sacrificed 19 and 46 days and 11 months after immunization. Control animals were infected through the conjunctival route with Br. abortus 544. Throughout the period of observation the experimental animals were negative serologically (CF and agglutination tests). Most of the significant pathological changes were observed 19 days after immunization, and consisted of the following: the liver showed hyperplasia of the RES cells, hyperemia, and limited lymphocyte infiltrates; the spleen showed RES cell hyperplasia, hyperemia, and moderate infiltration of the pulp with neutrophils, macrophages, plasma cells, and immature lymphocytes, while the lymph nodes showed hyperplasia of the secondary follicles and RES cells, infiltration of the cortex and the 1/2

USSR

YAZYKOVA, K. N. and N. I. YERZ, Veterinariya, No 4, 1973, pp 41-42

medullary cords and the sinusoids with lymphoid cells, macrophages, plasma cells, and some neutrophils. By day 46 the changes in the lymph nodes were more pronounced, but abnormal findings were absent in the other organs. At 11 months the experimental animals were infected conjunctivally with Br. abortus 544; only mild changes of the type already noted were seen in the lymph nodes of the head region. Infection of nonimmunized controls with Br. abortus B-8 elicited severe changes in the lymphoid and other tissues of the type previously described, complicated by hemorrhages and necrotic changes in the liver and the lymph nodes. Infiltrative changes were much more pronounced than in the experimental animals.

2/2

B3. -

Veterinary Medicine

USSR

UDC 636.2:615.371

ZHOVANIK, P. N., Doctor of Veterinary Sciences, and MAYBORODA, A. A. and YERZH, N. I., Candidates of Veterinary Sciences, Ukrainian SSR Scientific Research Institute of Veterinary Science

"Tests of Strain B-8 Nonagglutinating Brucellosis Vaccine in Immunization Experiments on Young Cattle"

Moscow, Doklady Vsesoyuznoy Ordena Lenina Akademii Sel'skokhozyaystvennykh Nauk imeni V. I. Lenina, No 8, 1972, pp 33-35

Abstract: Dry, live brucellosis vaccine obtained from cultures of nonagglutinating, weakly virulent mutant Brucella abortus, strain B-8 was tested in the laboratory of guinea pigs and 5-10 month old heifers and at two brucellosis-infected farms on 5-10 month old heifers. The preliminary laboratory experiments indicated that the vaccine did not cause appearance of agglutinins and generated stable immunity. No significant pathological changes due to the vaccine were noted. In a 2-year period 641 heifers at 2 farms were immunized at 5-10 months old and revaccinated 1-2 months prior to fertilization. Pathological changes were insignificant up to 6 weeks after vaccination, while none were noted among heifers slaughtered 10 months after vaccination. The vaccine culture was found to survive well for the 1st 3 weeks and then rapidly 1/2

USER

ZHOVANIK, P. N., et al., Doklady Vsesoyuznoy Ordena Ienina Akademii Sel'-skokhozyaystvennykh Nauk imeni V. I. Ienina, No 8, 1972, pp 33-35

disappear by the 6th week. Hemagglutination and complement-fixation reactions were negative after vaccination and revaccination for all but 1 immunized heifer. The preventative properties of blood serum from 69 vaccinated heifers were tested on white mice. Such serum resulted in 41.3% survival of mice infected with a highly virulent strain, while only 22.6% of such mice survived when not treated with the serum. The immunity of 18 vaccinated and 12 control heifers was tested by infecting them with standard strain Br. abortus 544. While a generalized infection resulted among all control animals, 13 immunized heifers had complete immunity and 5 had partial immunity. All 5 animals infected after revaccination exhibited complete immunity. It is concluded that this vaccine should be tested further and employed on young animals to improve the condition of brucellosis-infected herds.

2/2

. 80 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

USSR

UDC 547.241

AZERBAYEV, I. N., DZHAYLAUOV, Yu. G., BOSYAKOV, K. B., YERZHANOV, K. B., SERIKBAYEV, K. S., and ALEKSEYEVA, N. N., Institute of Chemical Sciences, Acad. Sc., KazSSR, Alma-Ata

"Reactions of Unsaturated Phosphites With Aldehydes and Ketones"

Alma-Ata, Izvestiya Akademii Nauk Kazakhskoy SSR, Seriya Khimicheskaya No 1, Jan-Feb 73, pp 51-57

Abstract: Condensation of dipropargyl phosphite with chloral and bromal yields 0.0-dipropargyl (1-hydroxy-2,2,2-trichloroethyl) phosphonate and its tribromo analog even without any catalyst. In the presence of sodium alkoxide the reaction of diallyl phosphate with 2,5-dimethylpiperidone-4, 2,6-diphenyl-piperidone-4, 2,6-di(2-hydroxyphenyl)-piperidone-4, 1,2,5-trimethylpiperidone-4 yields the respective 4-diallylphosphanepiperidoles-4; with 2,2-dimethyl-tetrahydropyranone-4, 2,2-dimethyltetrahydrothiopyranone-4 and 2,5-dimethyl-tetrahydrothiopyranone-4 the products are the respective 4-diallylphosphane-tetrahydropyranols-4. The esters of α -hydroxyphosphinic acids of pyrone, and thiopyrone series are unstable, decomposing on distillation.

1/1

23 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

USSR

UDC 547.241+547.362+547.81+547.823

AZERBAYEV, I. N., DZHAYLAUOV, S. D., BOSYAKOV, Yu. G., YERZHANOV, K. B., and SERIKBAYEV, K. S., Institute of Chemical Sciences, Academy of Sciences KazakhSSR

"Reaction of Dipropargylphosphorous Acid With Heterocyclic Ketones"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 2, Feb 73, pp 288-292

Abstract: Reaction of dipropargylphosphorous acid with (-ketones of the pyran, thiopyran, and piperidine series in presence of sodium alkoxide leads to the formation of respective dipropargyl esters of heterocyclic a-hydroxyphosphonic acids. It was shown that nucleophilic addition of dipropargyl phosphite to pyranone and thiopyranones, in contrast to piperidones, requires the presence of alkaline catalysts. It is assumed that the aminoketone acts as a catalyst.

1/1

UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--SYNTHESIS OF HETEROCYCLIC ACETYLENIC ALPHA, ALPHA PRIME, AND GAMMA
TRIOLS -U-

AUTHOR-(03)-AZERBAYEV, I.N., KUSAINOVA, ZH.ZH., YERZHANOV, K.B.

COUNTRY OF INFO--USSR

SOURCE--IZV. AKAD. NAUK KAZ. SSR, SER. KHIM. 1970, 20(1), 81-4

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--CONDENSATION REACTION, KETONE, ACETYLENE, HETEROCYCLIC NITROGEN COMPOUND, ALCOHOL, CHEMICAL SYNTHESIS

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0622

STEP NO--UR/0360/70/020/001/0081/0084

CIRC ACCESSION NO--APO119534

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

THE SECTION OF THE REPORT OF THE PROPERTY OF T

UNCLASSIFIED PROCESSING DATE--300CT70 2/2 009 CIRC ACCESSION NO--APO119534 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE TITLE COMPOS. WERE PREPD. EITHER BY CONDENSATION OF KETONES (SUCH AS SUBSTITUTED PIPERIOGNES) WITH HEXYNEDIOL, OR BY CONDENSATION OF 4, HYDROXY, 4, ETHYNYLPIPERIDONES WITH BETA KETOLS. THUS, 12.6 G 2,6, DIPHENYL, 4, PIPERIDONE AND 12.8 G 3, METHYL, 1, HEXYNE, 3, 5, DIOL (I) IN 100 ML TETRAHYDROFURAN (II) WAS ADDED AT 0-2DEGREES TO 16.8 G KOH AND 150 ML II TO GIVE 52PERCENT 2,6,DIPHENYL,4,(3,METHYL,3,5,DIHYDROXYHEXYNYL),4,PIPERIDINOL (III), M. 117-18DEGREES (LIGROINE); HYDROCHLORIDE M. 262-4DEGREES: SIMILARLY, 56PERCENT, 2,2,5,TRIMETHYL,4,13,METHYL, 3,5,DIHYDROXYHEXYL),4,PIPERIDINOL; M. 132-3DEGREES (LIGROINE) (HYDROCHLORIDE M. 160-1DEGREES) WAS PREPD. FROM 5.7 G 2,2,5,TRIMETHYL,4,PIPERIDONE AND 7.6 G I. ETMGBR (FROM 1.93 G MG AND 8.75 G ETBR IN 100 ML III WAS TREATED WITH 6.68 G BETA ISOMER OF 1,2,5,TRIMETHYL,4,HEXYNYL,4,PIPERIDINOL IN 50 ML II AND 4.1 G 2,0x0,4,PENTANOL IN 20 ML II TO GIVE 35PERCENT 1,2,5,TRIMETHYL,4,(3, METHYL,3,5,DIHYDROXYHEXYNYL),4,PIPERIDINOL M. 139-40DEGREES; HYDROCHLORIDE M. 227-8DEGREES. SIMILARLY, 63.2PERCENT 2,2,DIMETHYL,4,(3,METHYL,3,5,DIHYDROXYHEXYNYL), 4,TETRAHYDROPYRANOL M. 78-9DEGREES WAS OBTAINED FROM 6.15 G 2,2,DINETHYE,4,ETHYNYL,4,TETRAHYDRDPYRANOL AND 4.1 G III. FACILITY: INST. KHIM. NAUK, ALMA-ATA, USSR.

UNCLASSIFIED ...

ŀj

3

USSR

UDC 911.3:616.981.452(574.11)

SHEVCHENKO, V. L., ALTUKHOV, A. A., IVANOV, S. I., YERZHANOV, S. T., GRAZHDANOV, A. K., KAYMASHNIKOV, V. I., and MEDZYKOVSKIY, G. A.

"Isolation of a Culture of Plague Bacteria in the Spring of 1968 on the Northeast Border of the Volga-Ural Sands"

V sb. Probl. osobo opasn. infektsiy (Problems of Especially Dangerous Infections -- collection of works), Saratov, No 4(14), 1970, pp 135-138 (from RZh-Meditsinskaya Geogragiya, No 3, Mar 71, Abstract No 3.36.115)

Translation: The conditions of isolation and results of a study of two strains of plague bacteria in the natural landmark area of Annar, the Furmanovskiy rayon of Uralskiy Oblast are described. Both strains were isolated in a region in which no epizootic diseases have been recorded for more than 20 years and in which great gerbils are almost completely nonexistent. The reduced virulence, as well as some cultural and biochemical characteristics of the cultures studied, clearly differentiate them from the earlier isolated strains on the Volga-Ural Sands both in peak epizootic periods as well as in the interepizootic years.

1/1

- 36 -

USSR

UDC 539.3 : 534.1

YERZHANOV, ZH. S., and KOKSALOV, K. K.

"Stability of a Composite Plate on an Undeformable Base Subject to Edge Pressure"

Alma-Ata, Izvestiya Akademii Nauk Kazakhskoy SSR, Seriya Fiziko-Matemati-cheskaya, No 5, Sep-Oct 72, pp 33-39

Abstract: The article considers the stability of a semi-infinite laminated medium lying on an absolutely rigid base, with allowance for horizontal displacements under the action of edge pressure. The variational principle is used to obtain equilibrium equations and elastic stability boundary conditions. An expression is obtained for critical force.

1/1

USSR

WC 622.011.43

YERZHANOV, ZH. S., and VEKSLER, YU. A.

"Creep and Destruction of Rock During Omnidirectional Compression"

Kiev, Fiz. Svoystva Gorn. Porod pri Vysok. Termodinam. Farametrakh -- Sbornik (Physical Properties of Rock in the Presence of High Thermodynamic Parameters -- Collection of Works), Naukova Dumla, 1971, pp 187-190 (from Referativnyy Zhurnal, Mekhanika, No 2, Feb 72, Abstract No 2V774 by G. N. Sheft r)

Translation: An analysis is given of the results of experiments on the creep and destruction of tubular samples 90-100 mm high with external and internal diameters of 74 and 44 mm, to the external surface of which is applied a uniformly distributed pressure, the value of which was as high as 600 kg/cm². The duration of the experiments comprised on the average 400-600 hours. Shifting of the internal contour u of the sample was determined according to the formula

 $u = 2.3 \, \frac{\rho_0 r_0}{E} \left(\int_0^t \frac{d\tau}{T} \right)^{0.85}$

where p_0 is the external pressure, r_0 is the internal radius of the sample, E is the modulus of elasticity, T is the relaxation time, t is the duration of 1/2

99 w

- USSR

YERZHANOV, ZH. S., And VEKSLER, YU. A., Fiz. Svoystva Gorn. Porod. pri Vysok. Termodinam. Parametrakh -- Sbornik, Naukova, Dumka, 1971, pp 187-190

loading. Consideration is given to cases where the value of T is related to time in accordance with an exponential law. A formula determining the longevity of a rock sample is obtained. A graph of the relationship of the longevity logarithm to the activation energy in the pulse of destruction is presented.

2/2

Acc. Nr: AP0037843

UR 0056 Ref. Code:

PRIMARY SOURCE:

Zhurnal Eksperimental noy i Teoreticheskoy Fiziki, 1970, Vol 58, Nr 1, pp 76-79

MAGNETIC HYPERFINE INTERACTION FOR Coo IN Pt-Co ALLOYS

Yerzinkyan, A. L.; Parfenova, V. P.

The magnetic fields on Co60 nuclei in Pt — Co alloys are measured by the oriented nuclei technique for Co concentration between 8 and 90 at.%. The field strength on the nucleus is practically independent on the Co concentration. The results are compared with the corresponding data for Pd - Co alloys obtained previously [4, 2]. The experimental results point to a significant difference in the interaction of the Co atom magnelic moment with the conductivity electrons in the two matrices.

18 OB

1/2 022

UNCLASSIFIED PROCESSING DATE--11DEC70

BURATE GLASSES -U-

TITLE--EFFECT OF TEMPERATURE ON THE ELECTRICAL CONDUCTIVITY OF FUSED

AUTHOR- (02)-KUSTANYAN, K.A., YERZNKYAN, YE.A.

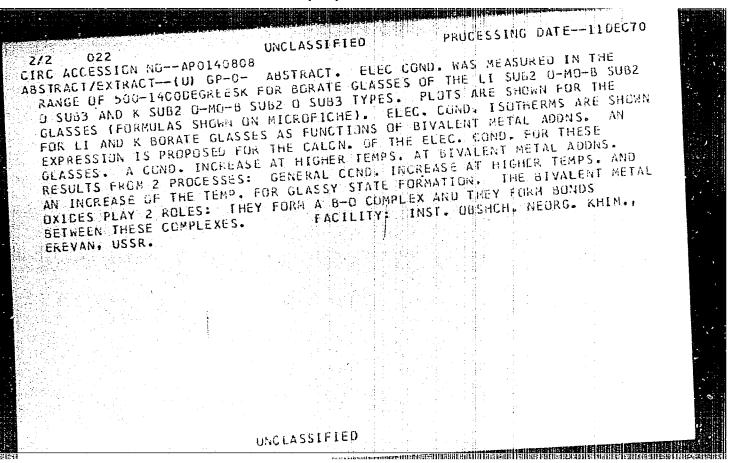
COUNTRY OF INFO--USSR

SCURCE--AFM. KHIM. ZH. 1970, 23(4), 211-18

DATE PUBLISHED ---- 70

SUBJECT AREAS -- MATERIALS

TUPIC TAGS-BORATE GLASS, ELECTRIC CONDUCTIVITY, ISOTHERM, LITHIUM GLASS, PUTASSIUM COMPOUND, OXIDE GLASS, GLASS CUMPOSITION, BORON COMPOUND, COMPLEX CUMPOUND


CONTROL MARKING--NU RESTRICTIONS

DECUMENT CLASS--UNCLASSIFIED PROXY FICHE NU----F070/605018/C03 STEP NO--UR/0426/70/023/004/0211/0218

CIRC ACCESSION NO--APOI40808

UNCLASSIFIED.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

UNCLASSIFIED

TITLE--CHARACTERISTICS OF DI, SEC, BETA, GLYCOLS -U-AUTHOR-(C2)-YESAFGV. V.I. . AZARGVA, V.I.

GEUNTRY OF INFO-USSR

1/2

SGURCE-ZH. ORG. KHIM. 1970, 6(4), 678-80

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--GLYCOL, GRIGNARD REAGENT, DRGANIC SYNTHESIS, CHEMICAL

CENTREL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PRUXY REEL/FRAME-2000/2046

STEP NO--UR/0366/70/006/004/0676/0680

FROCESSING DATE-- 20NOV70

CIRC ACCESSION NO--APO125634

UNCLASSIFIED

CIDC A	TOC ACCESSION NOAPO125		h34			PROCESSING DATE20NOV70				
ARSTRA	TIEXTRAL	T(U) GP- BUTYRALDE	O- ABST	RACT.	THE ACTI RALDEHYD	ON OF G E GAVE	RIGNARD (SHOWN :	REAGENTS On	UN	
MICR	GFICHE) 1	N ACIDS AN	D ALKALI	ES.	FAC	ILITY:	URAL.	GOS. UNIV.		
IN.	GER!KOGU,	SVERDLOVS	k, USSR.							
							1		:	
							1			
							Park	1		
							: '			
						1.4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
) 			
						#1				
			UNCLASS	IFIED						

USSR

YESAKOV, A. I., and DMITRIYEVA, T. M.

Neyrofiziologicheskiye Osnovy Taktil'nogo Vospriyatiya (Neurophysiological Bases of Tactile Perception), Moscow, "Meditsina," 1971, 132 pp

Translation: Annotation: Data is provided about the intimate mechanisms of excitation of the mechano receptors of the skin, the adaptation, organization and properties of peripheral receptor fields. Emphasis is put on questions about the fluctuations in thresholds and the significance of that phenomenon to describe the physiological norm of sensitivity. A description is given of characteristics of lateral interaction among field receptors and receptors surrounding the receptor fields and the mechanism of its accomplishment. Aspects of the morphofunctional organization of the central pathways of the tactile analysor and properties of the central sensory switching on all levels of transmission of tactile information are clucidated. An examination is made of mechanisms of descending effects on the activity of the central sensory switching, as well as questions of efferent regulation of the apparatus of the tactile receptors. A description is given of the somatic and sympathetic paths of regulation of tactile receptors and the role of meditors in such regulation. The present status of the questions about the specificity of skin receptors is discussed. 1/3

- 59 -

1 USSR YESAKOV, A. I., and DMITRIYEVA, T. M., Neyrofiziologicheskiye Osnovy Taktil'nogo Vospriyatiya, Moscow, "Meditsina," 1971, 132 pp A correlation is made between psychophysiological and electrophysiological research for an understanding of the mechanisms forming the tactile sense in man. Table of Contents: Page Preface 3 Introduction 7 Chapter I. Classification of Mechano Receptors 11 Chapter II. Organization and Characteristics of the Receptor Field 31 Chapter III. The Mechanism of Excitation of Mechano Receptors 44 Chapter IV. Adaptation of Mechano Receptors 55 Chapter V. The Effect of Chemical Substances on the Activity of

60

64

81

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

Chapter VI. The Conducting Paths and Central Organization of the

Chapter VII. Efferent Regulation of the Activity of the Tactile

Mechano Receptors

Tactile Analyzor

Receptors

2/3

USSR			
	and stantal agiche	etive Osnovy	Taktil'-
YESAKOV, A. I., and DMITE	IYEVA, T. M., Neyrofiziologiche	SKIJC COM	
nogo Vospriyatiya, Moscow	, 116422222		Page
negating	Effects on the Activity of the	* .	97
Chapter VIII. Descending Switching Relay of the	Tactile Analysor		
The Status o	I flie differiou or	ty or	104
the Skin's Mechano Rece	ptors Nothods of Investig	ating	-
Chapter X. Subjective an	ptors d Objective Methods of Investig	, -	11.5
the Sensory Systems			122
Bibliography			
	化为分配 化三氯基酚 医二甲基		•
	그 시간은 그를 위한 바다 그렇게	• 1	
		:	
3/3			
3/3		5	
	- 100 -		

1/2 030 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--STUDY OF A PLATINUM, BARIUM ALLOY IN A FIELD EMISSION MICROSCOPE -U-

AUTHOR-(02)-ZUBENKO, YU.V., YESAULOY, N.P.

COUNTRY OF INFO--USSR

SOURCE-FIZIKA TVEROOGO TELA, MAR. 1970, 12, (3), 852-855

DATE PUBLISHED ---- MAR 70

SUBJECT AREAS-MATERIALS, PHYSICS

TOPIC TAGS--ELECTRON MICROSCOPY, SINGLE CRYSTAL, PLATINUM, CRYSTAL STRUCTURE, BARIUM ALLOY

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3003/0153

STEP NO--UR/0181/70/012/003/0852/0855

CIRC ACCESSION NO--APO129409

UNCLASSIFIED

UNCLASSIFIED

PROCESSING DATE--04DEC70

CIRC ACCESSION NO--APO129409

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE EMISSION IMAGES OF A PT-1.3

WT. PERCENT BA SINGLE CRYSTAL WERE STUDIED IN A FIELD EMISSION ELECTRON MICROSCOPE AFTER HEAT TREATMENT AT VARIOUS TEMP. (1000-1900DEGREESK).

THE IMAGES THUS OBTAINED GAVE A CLEAR PICTURE OF THE GRADUAL FORMATION OF AN ADSORBED BA FILM AND ITS GENERAL BEHAVIOUS ON THE SURFACE ON THE ALLOY. ON HEATING THE CRYSTAL TO 1050DEGREESK AND CAREFULLY RAISING THE APPLIED VOLTAGE AN EMISSION PICTURE IN WHICH THE CENTRAL DARK (111) FACE APPEARED SURROUNDED BY A BRIGHT HALO WAS OBTAINED. 15 REF.

UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--X RAY DIFFRACTION STUDY OF PLATINUM BARIUM AND PALLADIUM BARIUM
ALLOYS IN THE REGION OF PT SUBS BA AND PD SUBS BA COMPOSITIONS -UAUTHOR-(03)-ZHURAVLEV, N.N., YESAULDV, N.P., RALL, I.V.

COUNTRY OF INFO--USSR

SOURCE--KRISTALLOGRAFIYA 1970, 15121, 374-6

DATE PUBLISHED ---- 70

SUBJECT AREAS--MATERIALS, CHEMISTRY, PHYSICS

TOPIC TAGS--X RAY DIFFRACTION, PLATINUM ALLOY, PALLADIUM ALLOY, BARIUM ALLOY, MICROSCOPY ALLOY, BARIUM COMPOUND, X RAY EMISSION

CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0320

STEP NO--UR/0070/70/015/002/0374/0376

CIRC ACCESSION NO--APOL19307

UNCLASSIFIED

STATES OF THE PROPERTY OF THE

PROCESSING DATE--230CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APOL19307 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. PT-BA AND PD-BA ALLOYS THAT ARE RICH IN PT AND PD HAVE EMISSIVE PROPERTIES. AN ALLOY CORRESPONDING TO THE PT SUB5 BA COMPN. WAS HOMOGENIZED AT 1320DEGREES IN A PROTECTIVE ATM. OF AR FOR 50 HR AND THEN ANNEALED AT BOODEGREES FOR 30 HR AND AT 700DEGREES FOR 50 HR. INTENSITIES WERE MEASURED WITH A DIFFRACTOMETER BY USING MICROSCOPIC CONTROLLED MICROSECTIONS PROTECTED WITH PARAFFIN WAX. THE COMPO. IS STABLE IN THE ABOVE TEMP. RANGE, DESPITE PREVIOUS DATA (T. HEUMANN, CA 45:6451G), AND IT PRESERVES THE STRUCTURE OF THE CACU SUBS TYPE WITH A EQUALS 5.505 PLUS OR MINUS 0.006 AND C EQUALS 4.337 PLUS OR MINUS 0.0009 ANGSTROM. THE DIFFERENT DIFFRACTOGRAMS REVEALED DIFFERENT INTENSITIES, WHICH MIGHT BE DUE TO VARIOUS DEGREES OF DECOMPN. OF PT SUB5 BA ON THE MICROSECTION SURFACE UNDER THE INFLUENCE OF THE ATM. PD SUBS BA WITH A EQUALS 5.54 PLUS OR MINUS 0.01 AND C EQUALS 4.33 PLUS OR MINUS 0.02 ANGSTROM IS ISOMORPHIC WITH PT SUBS BA. FACILITY: MOSK. GOS. UNIV. IM. LOMONOSOVA, MOSCOW, USSR.

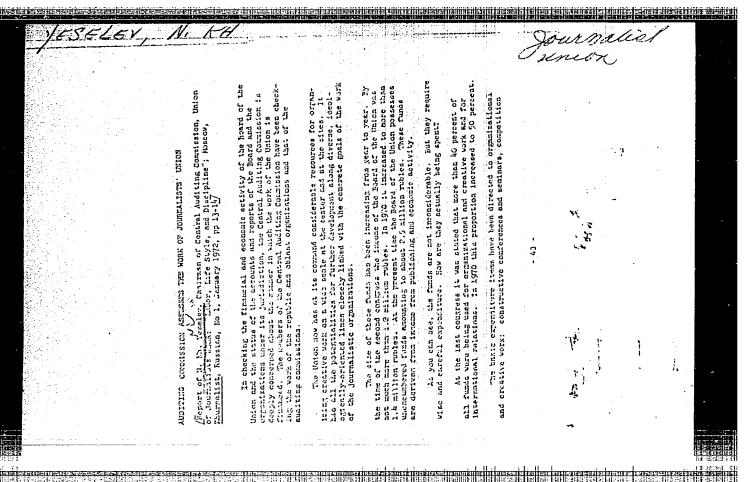
UNCLASSIFIED

USSK

UDC 632.95

YESAYAH, G. T., DAERUEYAN, G. A., KHACHATKYAH, R. M., LABAYAK, A. A., KHACHATKYAH, V. S., Institute of Organic Chemistry, Academy of Sciences Armenian SSR

"A Method of Preparing 3-Nitro-4-oxybenzyl Ether of 2,4-Dichlorophenoxyacetic Acid"


USSR Authors' Certificate No 243657, filed 24 Jun 68, published 26 Feb 70 (from Referativnyy Zhurnal Khimiya, No 17, 10 Sept 70, Abstract No 17 1643 P)

Translation: 3-hitro-4-oxybenzyl ether of 2,4-dichlorophenoxyacetic acid (I) is excess of formalin, and a 500-1000; excess of hydrochloric acid at 65-100°C with subsequent condensation of the resultant 3-nitro-4-oxybenzychloride (III) with the sodium salt of 2,4-D at 90-100°C for 12 hrs in Phie or xylene. 600 gm II, 600 gm 34% CH₂0, and 3600 ml 35% hydrochloric acid are heated to 90-95°C with agitation for 12 hrs, then poured into a beaker for crystallization; the excess acid is removed by decanting, and the product is washed in water to produce 750 gm III. 187 gm of unpurified compound III, 315 gm of the sodium salt of 2,4-D and 100 ml Phie are heated at 100°C for 12 hrs; after water filtering, the product is dried in air. The result is 357 gm I with a yield of 95.9%, melting point 95°C(CCl₄). I has herbicidal properties against weeds in corn, potatoes, and grapes.

A. F. Prokof'yeva

UNCLASSIFIED PROCESSING DATE--020CT70 TITLE-NEW EPUXY POLYAMIDE PRIME COATS AND ENAMELS -U-AUTHOR-104)-CHEPOTARVESKIY, V.V., YESELEV, A.D., SMIRNOVA, L.I., GABIROV, COUNTRY OF INFO-USSR SOURCE--LAKEKRASOCH. MATER. IKH. PRIMEN. 1970, (1), 22-5 DATE PUBLISHED ----- 70 TOPIC TAGS-ENAMEL, PROTECTIVE COATING, EPOXY RESIN, PAINT, GASOLINE, KERDSINE, FERTILIZER, THERMAL STABILITY, CHEMICAL STABILITY/(U) EPO76 PRIMER, (U)EP140 ENAMEL, (U)EP076T PAINT, (U)PD200 PAINT RESIN, (U)EP09T COATING. (U) A63A PRIMER CONTROL MARKING--NO RESTRICTIONS STEP NO-UR/0303/70/000/001/0022/0025 DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/0554 CIRC ACCESSION NO--APO107159 UNCLASSIFIED

PROCESSING DATE--020CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APO107159 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. FORMULATIONS WERE DEVELOPED FOR ERDXY RESIN POLYAMIDE EP-076 PRIMER (I) AND EP-140 ENAMEL (II). I WAS COMPOSED OF EP-076T PAINT AND HARDENER NO. 2 (111) (A 30PERCENT PO-200 RESIN SOLN. I WHICH WERE BLENDED IN 75:25 RATIO JUST PRIOR TO APPLICATION; IT WAS ALSO COMPOSED OF A PAINT AND ITT. AND WAS AVAILABLE IN A VARIETY OF COLORS. THE 2 COATINGS HAD SIMILAR PHYSICOMECH. PROPERTIES. BUT I (DUE TO THE SPECIFIC STRUCTURE OF POLYAMIDES) WAS INTERNALLY PLASTICIZED, WHICH MARKEDLY IMPROVED ITS THERMAL STABILITY AND AGING RESISTANCE. A 4 YEAR STUDY OF II APPLIED OVER AN AG-3A PRIMER SUGGESTED THAT THE FORMER EXHIBITED GOOD WEATHERABILITY AND RESISTANCE TO GASOLINE, KEROSINE, NH SUB4 OH, AND VARIOUS DETERGENTS. II CAN BE EFFECTIVELY USED AS A PROTECTIVE COATING IN PLANTS MANUFG. N FERTILIZERS. I COATINGS WERE MARKEDLY MORE PROCESSABLE THAN EP-09T COATING AND HAD SUPERIOR HARDNESS. THERMAL STABILITY, AND OIL **潜脉结膜 [17] [16]** 人士 RESISTANCE. UNCLASSIFIED-

Thermodynamics

USSR

UDC 532.132

DIKINA, L. S., YESEL'SON, B. N., NOVIKOV, P. S., RUDAVSKIY, E. Ya., Physicotechnical Institute of Low Temperatures, Academy of Sciences of the UkrSSR, Khar'kov

"Dispersion of Heat Waves in He-II With a Damped Normal Component"

Kiev, Ukrainskiy Fizicheskiy Zhurnal, Vol 17, No 12, Dec 72, pp 1989-1996

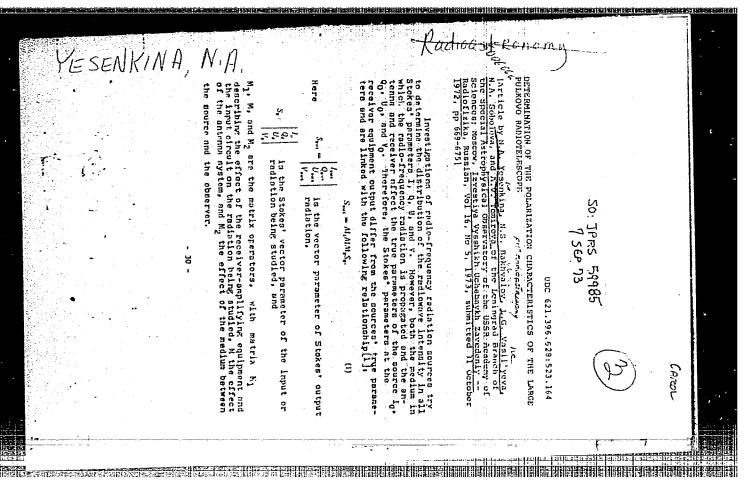
Abstract: The authors study the velocity of heat waves in narrow channels filled with superfluid helium. A carbon film was used as the radiator, and a thin antimony-doped germanium single crystal acted as the receiver. The heat waves propagated in narrow channels formed by fine glass filaments. The measurements were made by the pulse-phase method in the substitute $1.4^{\circ}\text{K-T}_{\lambda}$ temperature interval at radiation frequencies of 0.6, 2.0, and 3.0 kHz. It is shown that as the frequencies decrease with increasing depth of penetration of the viscous wave there is an increase in damping of the normal component and, hence, an increase in the degree of dispersion of the heat waves. The variation of the heat wave velocity in the temperature and frequency agrees satisfactorily with theoretical predictions if the mean effective dimension of the channels is taken as the normalizing parameter. 1/1

USSR

UDC 532.132

GRIGOR'YEV, V. N., GULIN, B. A., YESEL'SON, B. N., KOREPANOV, V. D., MIKHEYEV, V. A.

"Device for Investigating Diffusion and Magnetic Characteristics of 3He and 3He-4He Solutions by the Spin Echo Method"


Trudy, Fiziko-tekhnicheskiy institut nizkikh temperatur (Physico-technical Institute for Low Temperatures--collection of works)
Academy of Sciences, Ukrainian SSR, No. 10, 1970, pp 166-177 (from RZh-Fizika, No. 9, 1971, Abstract No. 9E36)

Translation: The description is given of a spin echo device, designed for investigating the characteristics of the and the solutions in the liquid and solid states. The device permits measurements of the coefficient of diffusion, the magnetic susceptibility, and the magnetic relaxation time, as they vary in a broad range. The results of controlled measurements of the diffusion coefficient in liquid the at various pressures are given. These results correspond well with the results obtained by other authors. Author's abstract.

1/1

- 75 -

YESENIN		2300	n #		ተውተላ ሪ ው ር ሥይ	# 0 2	\$7 : 2			
the	Tucal	ulcar Chronic Hastriis	Duodenal ulcer Castric	Diagnosia	We used a k acidity in 24) patt 38 with different by age and direction distinct to ensure pattents. The pill The capsules were rhead (30 to 55 m head condition an acotal of 2 1/2 to	The seatgrood by	biotethers writeln by		• •	
1878	243	5	36	Number of patients examined	P P C 2 3 5 7 3 5 7 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The first Soylet radiotaleneity apparatus for guarrounterology unaddesigned by the engineer A. L. Sorin and Academician Ye. B. Babakly. Radicapsiles (attlature radio transmittens) are may notilable for determining the pressure, and imperature of the guartrointestinal tract.	[Article by A. 9. Kapitanenko and V. I. Yesunin, Humena, Zhurini IIo 6, 1772, pp 82-85]			
Journe	198	29	£ 23	Males Females	a Kumpleks radiorelemetry magateners: 56 with gastric int forms of chronic gastric int forms of chronic gastric ition, of the disease is allowing comparability of the complete and secured in the lumen of 50 cm (rom the teeth). The sad after a test breakfast to 3 hours. The pattents to	radiotol or A. 1. 5 din transm	in sone or innenko ani			
	5	_	12 · 33	30-40	Horelemetry approint of the pastric ukt pastric ukt hardene La slown lity of the ceculity of the lumen of the cecthy. The lumen of the test branklant toll pastenes toll me past	emetry a orin and ictora)	d v. 1.			
	90 B2		9 20	years 3	ry apparatise rie ulcer, lettls. The lettles Tab about 1 Tab results obt title places the body The Intragas tis tolerated	Acader are my	Yesente	Бc		
Antonio Antonio Antonio	63 IV	2	. 2	years 61-70	y apparatus to investigate gairtic (c) ulcer, 1/9 with ducdonal ulcer, 1/9 with ducdonal ulcer, ritis. The distribution of patients flown in Tabin 1. We maintained concession in the individual (fit places in the digestive tract, of the body of stewach with silk filtergastric pis was recorded in taxt. The esmalazion usually took a tarted the procedure well;	paratus for gustronnto Academician Ye. B. Bab iro moy available for d Hastruintestinal wract	ij Huser	UDC 616.33.002+616.342-092]-07		
		<u>.</u>	ر ا س	years 71-80 years	strib strib 1. % the d stom	Hastro	Ē	1.002+		
	9	22	2 8	years	investigate gairtic this ducidonal ulcer; ribution of patients We maintained com- de maintained com- de an the individual of the individual recorded in tract, procedure well;	centerology was Babakly, Rad for determining Wrack,	Voyanno-Heditainskiy	616.3		
yang di kacamatan di Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn	8	u	<u>ت</u> د	years g	ne garri ne pati of pati of pati ntained individual two tradition sill the sill the sill	kty.	Mad	42-00		
	*	7	5 4	16-20 a B	rric lcer, lcer, atient ed con idual ract, lik ed in cook	17 7 1	183	-120		
	2	5	2 H	years a more than 20 years	A Part of the control	Radio-	17	×		(3)

USSR

YESENOV, SH. YE., Academician, Academy of Sciences, Kazakh SSSR, and DAL'YAN, I. B., Candidate of Geological and Minarological Sciences

"Aspects of the Exploration of Large Occurrences of Oil and Gas in Subsalt Rock of the Eastern Outskirts of the Caspian Depression"

Alma-Ata, Vestnik Akademii Nauk Kazakhskoy SSR, No 3, March 1973, pp 3-10

Abstract: Results of the drilling of deep and superdeep wells in subsalt rock, conducted by the Aktyubinsk and Gur'yevsk oil and gas prospecting expeditions, show that in the eastern and southeastern sections this rock contains manifestations of oil and gas in a broad stratigraphic range: from the Artinsk stage to the lower Carboniferous. The most abundant oil and gas manifestations, accompanied by outbursts, were obtained in the eastern zone near the edge from Artinsk terrigene rock in well 88-P on the Kenkiyak platform, where the productive bed occurs in the 3886-3918-meter interval (recently, abundant oil and gas manifestations have been observed in well 38-P Ostansuk, interval 3482-3490 from Assel'sk rock, and in well 25-P Karatyube, interval 4225-4258 from Artinsk rock). In addition, intensive oil and gas manifestations with outbursts have been noted in the southeast part of the depression in well SG-2 on the Biikzhal platform from Artinsk rock in the 5250-5400-meter interval. Oil from well 88-P-Kenkiyak has a density of 0.8384 g/cm3 and a 1/2

USSR

YESENOV, SH. YE and DAL'YAN, I. B., Vestnik Akademii Nauk Kazukhskoy SSR, No 3, March 1973, pp 3-10

viscosity, at 20°C, of 9.07 Centistoke. It is of the benzine-kerosene type, with an initial boiling point of 84°C and a fraction yield of 25% up to 200°C and 46% up to 300°C. In well SG-2 Biikzhal, in spite of the great depth of occurrence of the productive bed, the oil has great density -- 0.8998 g/cm³ and a viscosity, at 20°C, of 97.54 Centistoke. The oil is of the kerosene type, with an initial boiling point of 176°C, a fraction yield of not more than 4% up to 200°C and 34% up to 300°C. Such a difference in the characteristics of oils from contemporaneous rock may be connected with the relatively smaller depth of occurrence of the bed at Kendiyak, and the distribution of the oils in the profile in accordance with their specific gravities. 4 figures, 1 table. 9 references.

2/2

-60-

THE ROOT OF A CHARLES AND A CH

USSR UDC 523.164

YESEPKINA, N. A., PETRUN'KIN, V. Yu., SOBOLEVA, N. S., and REYNER, A. V.

"Polarization Observations in an Antenna of Variable Profile"

Gor'kiy, Izvestiya VUZ--Radiofizika, Vol 14, No 8, 1971, pp 1149-1159

Abstract: A method is considered for eliminating parasitic polarization in antennas of variable profile through the use of a grid of curved wires. A description is also given of experiments performed at the Large Radiotelescope of the Pulkova Observatory to verify the effectiveness of the new design and the conclusions reached by the authors. Equations are derived for determining the shape of the grid wires on the basis of an earlier paper written by the first author named above (Radiotekhnika i elektronika, 6, No 12. 1961, page 1947). To design the grid, the authors use the focal synthesis method, in which the antenna is assumed to be excited by a plane wave with constant polarization. This permits determination of the field polarization at a given surface close to the focal plane. The grid which would permit the synthesis of the field distribution found by this method is then chosen. The authors thank G. M. Timofeyeva for her assistance, consisting of observation of solar circular polarization with the grid. The authors are connected with the Chief Astronomical Observatory. 1/1

unc 523.164

USSR

YESEPKINA, N. A.

"Polarization Characteristics of Radiotelescope Antennas"

Gor'kiy, Izvestiya Vysshikh Uchebnykh Zavedeniy, Radiofizika, Vol XIV, No 5,

Abstract: A study is made of the polarization characteristics of various radio telescope antennas on reception of partially polarized radiation considering the spurious polarization occurring in the antenna system itself. The polarization characteristics of the antenna are represented in the form of a (4 × 4)matrix (the Muller matrix [Muller, JOSA, Vol 38, 666 (A), 1948]) relating the Stokes parameters of the radiation at the antenna input and output. This method of presenting the polarization characteristics of radiotelescopes is suitable for studying completely polarized, partially polarized and unpolarized radiation. Analogous results can be obtained by coherent matrixes, but the Muller method turns out to be physically more graphic.

1/1

UNCLASSIFIED PROCESSING DATE--160CT70 TITLE-SURVIVAL AND BIOLOGICAL PROPERTIES OF STREPTOCOCCI GROUP A UNDER CONDITIONS OF EXPERIMENTAL STREPTOGOCCUS INFECTION TREATED WITH AUTHOR-104)-LABINSKAYA, A.S., PONOMAREVA, YE.P., AKHNAZAROVA, V.D., YESHCHINAT A.S. SOURCE-ZHURNAL MIKROBIOLOGII, EPIDEMIOLOGII I IMMUNOBIOLOGII, 1970, NR 5, COUNTRY OF INFO-USSR PP 105-108 DATE PUBLISHED 70 SUBJECT AREAS--BIOLOGICAL AND MEDICAL JIENCES TOFIC TAGS-STAPHYLOCOCCUS INFECTION, ANTIGEN, BLOOD SERUM, ANTIBIOTIC/(U)BICILLIN ANTIBIOTIC CONTROL MARKING--NO RESTRICTIONS STEP NO--UR/0016/70/000/005/0105/0108 DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1994/0132 CIRC ACCESSION NO--APO114528 UNCLASSIFIED

PROCESSING DATE--160CT70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE PAPER TREATS OF THE RESULTS OF UNCLASSIFIED STUDYING THE SURVIVAL AND VARIABILITY OF STREPTOCOCCUS A OF CULTURES CIRC ACCESSION NO--APO114528 UNDER THE EFFECT OF THERAPEUTIC CONCENTRATIONS OF BICILLIN IN AN EXPERIMENTAL FOCUS OF CHRONIC INFECTION CREATED BY RASKA'S METHOD (1962). IN BICILLIN TREATED ANIMALS VIABLE STREPTOCOCCUS A CELLS WERE REVEALED FOR A PERIOD OF 3 WEEKS, AND IN CONTROL ANIMALS, DURING THE WHOLE OBSERVATION PERIOD (FOR 8 WEEKS) . STREPTOCOCCI ALTERED IN MORPHOLOGICAL AND IN CULTURAL RESPECT IN THE ORGANISM OF CONTROL AND PARTICULARLY, OF EXPERIMENTAL ANIMALS. AS A RULE, REDUCTION AND LOSS OF HEMOLYTIC ACTIVITY OF STREPTOCOCCI WAS ACCOMPANIED BY CHANGES IN THE STRUCTURE OF AN ANTIGENIC APPARATUS: DUE TO THIS MICROBIAL CULTURES FAILED TO REACT IN PRECIPITATION REACTION AT FIRST WITH THE GROUP, AND LATER WITH THE TYPE HOMOLOGOUS ANTISTREPTOCOCCUS SERUM. STREPTOCOCCUS ANTIGEN WAS REVEALED IN THE BLOOD SERUM OF MANY EXPERIMENTAL ANIMALS AT LATE OBSERVATION PERIODS, WHEN BACTERIOLOGICAL EXAMINATION FOR STREPTOCOCCI OF THE CONTENTS OF THE CHAMBERS ALREADY PROVED TO BE FACILITY: INSTITUT REVMATIZMA ANN SSSR, MUSCOW. NEGATIVE. UNCLASSIFIED

APO046769	Ref. Code: <u>URO125</u>
ussr Yesibyan, e. m., dan	UDC 621.791.7:621.387.143.546.831 CHENKO, M. TE.
The second of the second	of an Arc with a Zirconium Cathods"
Kiev. Avtomatichesk	aya Svarka (Automatic Welding), No 1, 1970, pp 5-8 aya Svarka, No 1, 1970, p 79)
characteristics and zirconium cathode i	article contains a study of the static volt-ampere power balance of an open and compressed arc with a n air and in argon. These characteristics are commeters of the arc with a tungsten electrode in argon. ations and a 7-entry bibliography.
V 1	Reel/Frame
	1 <u>979007</u> 9

USSR.

UDC 621.317:621.317.727

POPOV, A. S., YESIKOV, YU. S., ZAKHARKIN, B. V.

"Wide-Band Phase Converter"

Sb. nauch. soobshch. Radiotekhn. fak. Dagestan. un-t (Collection of Scientific Reports. Radio Engineering Department. Dagestan University), 1970, No 1, pp 124-128 (from RZh-Radiotekhnika, No 10, Oct 71, Abstract No 10A181)

Translation: A study was made of the problem of using RC-circuits in a phase conversion circuit from the point of view of obtaining a constant output voltage in a wide-frequency band. Application of emitter followers with low input impedance and a negative feedback circuit (an amplifier with a dynamic load, k=1,000) permit variation of the phase of the supplied voltage from units of degrees to 150-160° in a wide-frequency band and operation on a low-impedance load. In conclusion, a practical phase converter scheme and its technical specifications are presented.

1/1

33

I/2 015 UNCLASSIFIED PROCESSING DATE—20NOV70

TITLE—MECHANISM OF THE ELECTRUREDUCTION OF DEGANDMERCURY SALTS—U—

AUTHOR—(05)—YESIKOVA, I.A., TEMKIN, D.N., TOMILOV, A.P., FLID, R.M.,

YAKOVLEVA, N.N.

CGUNTRY DE INFC—USSR

SOURCE—ZH. FIZ. KHIM. 1970, 44(1), 264-5 (RUSS)

DATE PUBLISHEC———70

SUBJECT AREAS—CHEMISTRY

TOPIC TAGS—ELECTROLYTIC REDUCTION, ORGANOMERCURY COMPOUND, CHEMICAL

REACTION MECHANISM, ALCOHOL, ETHANOL

CCONTROL MARKING—NO RESTRICTIONS

0

DOCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME--2000/2063

CIRC ACCESSION NO--APO125650

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

UNCLASSIFIED

STEP NO--UR/0076/70/044/001/0264/0265

UNCLASSIFIED PROCESSING DATE--20NOV7C CIRC ACCESSION NO-AP0125650 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE MECHANISM OF THE ELECTROCHEM. STAGE OF THE ADDN. OF VARIOUS MOLS. TO OLEFINS IN AN ELECTROCHEM. SYSTEM IN THE PRESENCE OF HG SALTS WAS STUDIED: C SUBN H SUB2N PLUS HX YIELDS C SUBN H SUB2NPOSITIVEL X, WHERE X EQUALS OH, OR, RC1010, NHR. THE INTERMEDIATE SIGMA ORGANCMETALLIC COMPOS. ARE FORMED FROM DLEFINS AND HG SALTS IN HX SOLNS. AT THE ELECTROLYSIS OF MERCURIOETHANOL SALTS ON A CU AMALGAM CATHODE (PH 14, 0.01 A-CM PRIMEZ) THE PROCESS OCCURRED IN STEPS. THE MECHANISM OF THE FORMATION OF ALC. AND C SUB2 H SUB4 AT 1.7-1.9 V IS AS FOLLOWS: HGIC SUB2 H SUB4 OH) SUB2 PLUS E PRIME NEGATIVE YIELDS H SUB2 O HGC SUB2 H SUB4 OH PLUS ETOH; HG C SUB2 H SUB4 OH PLUS E PRIME NEGATIVE YIELDS (FAST) (HGC SUB2 H SUB4 OH) PRIME NEGATIVE YIELDS (SLOW) HG PLUSIC SUB2 H SUB4 PLUS CH PRIME NEGATIVE. THE SYM, PRODUCT DIETHANCLHERCURY WAS OBTAINED BY ELECTROLYSIS OF 4M MERCURIOETHANOL CHLORIDE SOLN. IN ALK. MEDIA AT 0.8 V. FAGILITY: MOSK. INST. TONKOI KHIM. TEKHNOL. IM. LOMONOSOVA, MOSCOW, USSR.

OMET \$22 LEIEÜ

USSR

UDC: 669.15-198-154:541.13

FUGMAN, G. I., SOTNIKOV, A. I., YESIN, O. A., and BARMIN, L. N., Ural Polytechnic

"Rate of Ion Exchange Between Liquid Perrotitanium and an Oxide Melt"

Moscow, Izvestiya Vysshikh Uchebnykh Zavedeniy, Chernaya Metallurgiya, No 4, 1973, pp 9-12

Abstract: The authors study the use of the Faraday impedance method for finding the kinetic parameters of the oxidation-reduction processes taking place between metal and slag under retarded relaxation conditions of a double electric layer. It is shown that the use of standard methods for processing experimental data can result in significant error. Methodology is proposed for determining the exchange current (i_0) by analyzing the active component of the electrode impedance. The methodology is used in analyzing the results of the measurements in the ferrotitanium-slag system. The concentration relationship i_0 of titanium is studied for the lation-1550°C interval at 3-16 percent titanium in the metal and 0.5-5.0 percent 10_2 in the slag. A kinetics equation is proposed for calculating i_0 .

1/1

- 37 -

USSR

UDC 620.193.43

BULER, P. I., TOFORISHCHEV, G. A., YESIN, O. A., KOPYSOV, V. A., and LEPINSKIKH, V. B., Ural Polytechnic Institute imeni S. M. Kirov

"Anodic Behavior of Nickel in Melted Sodium Tetraborate"

Moscow, Zashchita Metallov, Vol 19, No 2, Mar-Apr 73, pp 196-198

Abstract: The anodic oxidation of nickel in melted sodium tetraborate was investigated in air at 800-900°. The anodic polarization of Ni (curves $\Delta f = i$) was determined under galvanostatic and potentiostatic conditions. The current officiency of Ni was defined from the anodic mass decrease and the current efficiency of 0 from the volume of separated gas. The anodic dissolution of Ni in bivalent form (Ni(metal)=Ni2+2e) with 80-85% current efficiency is characterized principally by the initial part of the polarization curves. Followed by concentrating polarization, the anodic dissolution of Ni leads to the development of a passivating film. The latter, gaining a hole conductivity, becomes the outer surface of the electrode on which the discharge of oxygen ions is realized. Together with this process, a partial oxidation proceeds of bivalent to trivalent Ni on the oxide-electrolyte boundary. Three figures, eight bibliographic references. 1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

UNCLASSIFIED PROCESSING DATE—300C170

TITLE—KINETICS OF THE REDUCTION OF MANGANESE FROM SLAG -U
AUTHOR-(03)-TOPORISHCHEV, G.A., STRELTSOV, A.K., YESIN, O.A.

CCUNTRY OF INFO—USSR

SOURCE—IZV. VYSSH. UCHEB. ZAVED., CHERN. MET. 1970, 13(3), 13-17

DATE PUBLISHED————70

SUBJECT AREAS—MATERIALS, CHEMISTRY

TOPIC TAGS—SLAG, MANGANESE OXIDE, CHEMICAL REDUCTION, SILICON

CCNTRCL MARKING—ND RESTRICTIONS

BOCUMENT CLASS—UNCLASSIFIED

PROXY REEL/FRAME—2000/1547

STEP NO—UR/0148/70/013/003/0013/0017

CIRC ACCESSION NO—AP0125173

UNCLASSIFIED

PROCESSING DATE--300CT70 UNCLASSIFIED 2/2 016 CIRC ACCESSION NO--AP0125173 POTENTIOSTATIC AND GALVANOSTATIC ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. METHODS WERE USED TO DET. KINETIC PARAMETERS OF THE REDN. OF MN IN SLAG. NNO (0.03-0.50PERCENT) WAS INTRODUCED INTO THE SLAG ACTING AS AN ELECTROLYTE AND CONSISTING OF 38PERCENT SID SUB2, 37PERCENT CAD, AND 25PERCENT AL SUBZ O SUB3. MOLTEN IRON, SATD. WITH H SUBZ AND CONTG. UP TO 0.4PERCENT MN, SERVED AS A CATHODE. EXPTL. STATIONARY CURVES ARE GIVEN SHOWING SPECIFIC CURRENTS: WHOSE VALUES ARE PROPORTIONAL TO THE UNDER STATIONARY CONDITIONS CATHODIC DEPOSITION OF MN FOLLOWS THE REACTION (MN PRIMEZ POSITIVE) PLUS ZE EQUALS (MN); THE RATE OF THIS REACTION IS LIMITED BY THE SLOW DIFFUSION OF MN PRIMEZ THIS TEMP. DEPENDENT DIFFUSION CONST. WAS DETD. AS D SUBMN PRIME2 POSITIVE EQUALS 9.8 TIMES 10 PRIME NEGATIVES EXP (MINUS 13.000-T) CH PRIME2-SEC FROM EXPTL. DATA AT 1632 AND 1673DEGREES. THE REDN. OF MN FROM SLAG BY C IS ASSUMED TO FOLLOW THE SCHEME (MNO) PLUS (C) EQUALS (MN) PLUS (CD). WITH AN EQUIL. CONST. LOG K SUB1 EQUALS (14,570-T) PLUS 8.57. IF THE METAL CONTAINS SI AT A CUNCN. MUCH HIGHER THAN EQUIL., THEN THE POSSIBLE PROCESS IS [MNO) PLUS (SI) EQUALS (MN) PLUS (S10), WITH EQUIL. CONST. LOG K SUB2 EQUALS (4180-T) MINUS 1.75 LOG T PLUS 5.27. CALCAS. SHOW THAT THE RATE OF REDN. WITH SI IS 3 ORDERS HIGHER THAN THAT WITH C. HENCE, IN DIFFUSIONAL REGIME, THE REDN. WITH SI IS MORE PROBABLY. SI ALSO ACCELERATES THE DESULFURIZATION PROCESS. FACILITY: URAL. POLITEKH. INST., SVERDLOVSK, USSR.

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--116EC70 THIE--VISCOSITY OF FUSED SILICATES CENTAINING TRUN, MANGAMESE, AND CALCIUM CAIDES -U-TOTHUS-1031-SUKULOV, V.I., POPEL, S.I., YESIN, C.A. CCUNTRY OF INFO-USSR SCURCE-12V. VYSSH. LCHE3. ZAVED., CHERN, MET. 1970, 13(4), 40-5 SATE PUEL ISHEE ----- 70 SUBJECT AREAS -- MATERIALS TOPIC TAGS-FLUID VISCOSITY, VISCOUS FLOW, SILICATE, INCH OXIDE, MANGANESE GXICE. CALCIUM GXIDE, ACTIVATION ENERGY CONTREL MARKING--NO RESTRICTIONS STEP NO--UR/0148/70/013/004/0040/0045 DECUMENT CLASS--UNCLASSIFIED PRUXY REEL/FRAME--3005/0820 CIRC ACCESSION NO--AF0132910 UNCLASSIFIED |

2/2 031 CIRC ACCESSION NO-AT0132910 UNCLASSIFIED PROCESSING DATE--110EC70 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT . VISCOSITY MEASUREMENTS WERE PERFORMED FOR MELTS IN THE FEO-SIO SUB2, MNG-SIO SUB2, FEO-CAU-SIO SUB2, AND FEG-MNO-SIO SUB2 SYSTEMS, AS WELL AS FOR THE MELTS OF THE FEC-MNG-CAU-SIG SUB2 SYSTEM IN A CONTROLED ATM. AND FOR A HIDE TEMP. RANGE. FROM THE TEMP. DEPENDENCE OF THE VISCOSITY, THE ACTIVATION ENERGY OF VISCOUS FLOR WAS DETO. FOR THE NM-SIG SUB2 SYSTEM, THE VISCUSITY OF THE MELTS IS CONSIDERABLY LESS THAN THE ONE DETD. BY THE COAXIAL CYLINDERS METHOD. WITH INCREASING SID SUB2 CONTENT IN THE MNC-SID SUB2 AND FED-SID SUB2 SYSTEMS; THE VISCOSITY INCREASES MONOTONICALLY AND IS SIMILAR TO 3 TIMES LARGER FOR THE MN SILICATES THAN IT IS FOR THE FE SILICATES. THE ACTIVATION ENERGY FOR VISCOUS FLOW FOR MNE-SIC SUB2 MELTS INCREASES IN A REGULAR FASHION WITH INCREASING SIO SUB2 CONTENT, WHICH CANNOT BE STATED FOR THE FED-SIG SUB2 SYSTEM. AT A CONTENT OF LESS THAN SOPERCENT SID SUB2, MINAT. ANIONS OF O IN THE FEC-SIC SUB2 MELTS ARE THE UNITS OF VISCOUS FLOW. THE MEASUREMENTS SHOWED THAT AT EQUAL SIG SUB2 CONTENT THE D. OF THE FEU-MND-SIG SUB2 MELTS IS HIGHER THAN THE D. OF THE FED-SID SUB2 SYSTEM. IN 4.COMPONENT FEO-CAU-MAD-SIG SUNZ MECTS, THE PARTIAL SUBSTITUTION OF CAG AND FED BY MNO CHEY WAS A SELECT ON THE VISCOSITY, THE MAGNITUDE OF WHICH AT THE SAME STO SUB2 CONCY. IS CLUSE TO ITS VALUES IN THE BINARY AND THE FACILITY: URAL. POLITEKH. INST., SVEROLOVSK, USSR. UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

PROCESSING DATE-- 300CT70 UNCLASSIFIED 2/2 021 CIRC ACCESSION NO--ATO121382 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. THE D., VISCOSITY, AND SURFACE TENSION OF MELTS OF THE FEO-MNO-CAO-SIO SUB2 SYSTEM WERE DETO. FROM THE LIQUIDUS LINE TO 1680DEGREES IN AN ATM. OF HIGHLY PURE HE, TO REDEFINE EXISTING DATA AND TO OBTAIN NEW DATA. THE D. WAS DETD. FROM THE CHANGE IN THE MAX. PRESSURE IN THE HE BUBBLE. THE MELTS WERE PREPD. FROM CHEM. PURE REAGENTS. THE D. OF FEO AT 1400DEGREES, OF SID SUB2 AT 1760DEGREES, AND OF MNO AT 1850DEGREES WERE 4.8, 2.07, AND 4.60 G-CM PRIMES, RESP. THE D. OF MNO, AS WELL AS THAT OF MND-SID SUB2 MELTS, HAS NOT BEEN DETD. PREVIOUSLY. THE PARTIAL MOLAR VOLS. OF THE COMPONENTS IN FED-SIO SUB2 AND CAO-SIO SUB2 MELTS ARE PRACTICALLY CONST. WITHIN A WIDE CONCN. RANGE, AND ONLY NEAR THE ORTHOSILICATE COMPN. DO THEY UNDERGO CHANGES. DESPITE THE PRESENCE OF OTHER COMPOS. IN THE SAMPLES, THE MIXING OF ORTHOSILICATES WITH PURE OXIDES AT THE EXPTL. TEMP. PROCEEDS WITHOUT MARKED CHANGE IN VOL.

UNCLASSIFIED

1/2 016 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--NONSTOICHIDMETRY AND MIXED CONDUCTION OF MELTS CONTAINING VANADIUM
PENTOXIDE -U-

AUTHOR-(03)-PASTUKHOV, E.A., YESIN, O.A., VATOLIN, N.A.

COUNTRY OF INFO--USSR

SOURCE--ELEKTROKHIMIYA 1970, 6(4), 453-60

DATE PUBLISHED----70

SUBJECT AREAS--MATERIALS

TOPIC TAGS--VANADIUM PENTOLIDE, VANADIUM OXIDE, LEAD DXIDE, CALCIUM OXIDE, ELECTROMOTIVE FORCE, ELECTRICAL CONDUCTIVITY, THERMAL EFFECT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/1150

STEP NO--UR/0364/70/006/004/0453/0460

CIRC ACCESSION NO--APOL21709

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

PROCESSING DATE--300CT70 UNCLASSIFIED 2/2 016 CIRC ACCESSION NO--AP0121709 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE SYSTEMS V SUB2 D SUB5-PBO, V SUB2 0 SUB5-CAO, AND V SUB2 0 SUB5-M SUBX 0 SUBY WERE STUDIED TO INVESTIGATE THE TRANSITION FROM ELECTRONIC TO TONIC CONDUCTION. THE EMF. AND ELEC. COND. WERE MEASURED AS FUNCTIONS OF TEMP., COMPN., AND O PARTIAL PRESSURE, PO. THE FRACTION OF ELECTRONIC CONDUCTION IS TABULATED FOR PO EQUALS 0.95, 0.21, AND 0.03 ATM, 0-100 MOL. PERCENT PBO, AND 830-1030DEGREES FOR V SUB2 D SUB5-PBO: 26-69 MOL. PERCENT CAD AND 730-1030DEGREES FOR V SUB2 O SUB5-CAD: 0-50 MOL. PERCENT AL SUB2 O SUB3 AND 730-1030DEGREES FOR V SUB2 D SUB5-AL SUB2 D SUB3; 42 AND 95 MUL. PERCENT B SUB2 O SUB3 AND 730-1030DEGREES FOR V SUB2 O SUB5-B SUB2 O SUB3; AND 32 MOL. PERCENT K SUB2 O AND 730-1030DEGREES FOR V SUB2 O A TRANSITION FROM ELECTRONIC TO IONIC CONDUCTION TAKES PLACE AFTER THE OXIDE ADDNS. THE SMALLER THE POLARIZING STRENGTH OF THE THE COMPN. DEPENDENCE ADDN., THE MORE EASILY IONIC CONDUCTION APPEARS. FACILITY: OF THE ACTIVITY OF V USB2 O SUB5 IS ALSO PLOTTED. INST. MET., SVERDLOVSK, USSR. UNCLASSIEIED

1/2 021 UNCLASSIFIED PROCESSING DATE--090CT70
TITLE--KINETICS OF MULTICOMPONENT REACTIONS AT METAL SLAG INTERFACE -U-

AUTHOR-(03)-CHURKIN, A.S., TOPURISHCHEY, G.A., YESIN, O.A.

COUNTRY OF INFO-USSR

SOURCE-IZV. VYSSH. UCHEB. ZAVED., CHERN. MET. 1970, 13[2], 5-9

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--IRON OXIDE, MANGANESE OXIDE, MANGANESE, SULFUR, SLAG, CALCIUM UXIDE, ALUMINUM OXIDE, MAGNESIUM OXIDE, MULTICOMPONENT CHEMICAL MIXTURE, DESULFURIZATION

CENTRUL MARKING-NO RESTRICTIONS

DOCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME--1993/1907

STEP NO--UR/0148/T0/013/002/0005/0009

CIRC ACCESSION NO--ATOLIA347

UNCLASSIFIED

2/2 021 UNCLASSIFIED CIRC ACCESSION NO--AT0114347 PROCESSING DATE--090CT70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE EFFECT OF THE SIMULTANEOUS PRESENCE OF MN, MNO, AND FEO ON THE DEGREE. OF DESULFURIZING, Z, OF CAST IRON, FE-C SUBSAT-MN-S, WAS STUDIED FOR A SLAG CONTG. CAO 41.5, AL SUB2 D 5083 52.8, MGD 5.7, AND FED PLUS MND 0.2PERCENT. INCREASING THE CONCN. OF MM. (MN), IN THE METAL INCREASED Z. INCREASING (MN) (1.95-4.2PERCENT) INCREASED Z SHARPLY AND REDUCED THE PERIOD IN WHICH THE MAX. DEGREE OF POSSIBLE DESULFURIZATION, THETA, WAS ATTAINED. THE EFFECT OF (MN) WAS GREATER THAN WITH THE CONCN. OF MN IN THE SLAG (MN). THE EXPTL. RESULTS WERE CORRELATED WITH VALUES CALCO. BY USING EQUATIONS DEVELOPED PREVIOUSLY (CHURKIN, ET AL., 1969). INCREASING (FED) INCREASED THETA. INCREASING (MN) LOWERED THE PARTICIPATION OF FEO IN THE TRANSFER OF S FROM THE METAL TO THE SLAG. THE ADDN. OF MNO TO THE SLAG LOWERED THE RATE OF DESULPURIZATION. POLITEKH. INST., SVEROLOVSK, USSR. FACILITY: URAL.

UNCLASSIFIED

en karrigoria derrationale de la company La company de la company d

USSR

UDC: 621.384.633.6

YESIN, S. K., et al, Pribory i Tekhnika Eksperimenta, No 4, 1973, pp 20-22

in assembling and installing the orbital perturbation system, and to G. V. Badalyan, K. A. Sadoyan, and V. L. Serov for their comments and discussions.

2/2

- 79 -

USSR

UDC 536.421.4+536.421.1

YESIN, V. O. and PANKIN, G. N.

"Kinetics of the Growth of Dendrites in Tin"

V sb. <u>Kristellizatsiya i faz. prevrashcheniya</u> (Crystellization and Phase <u>Transformations--collection of works</u>) <u>Finsk</u>, "Mauka i tekhn." 1971, pp 152-157 (from <u>RZh-Fizika</u>, No. 9, 1971, Abstract No. 9E381)

Translation: The dependence of the growth rate (GR) of dendrites at the free surface of a pure Sn alloy on the degree to which it is supercooled is investigated. The GR of the dendrites was measured by two independent methods: by rapid cinematography and by two thermocouples (at a distance of 5-8 mm). The highest GR of the Sn dendrites was 624 cm/s for a general supercooling of 33.60 of the alloy.

1/1

. 5%

USSR

unc 669.25'71:536.722

PETRUSHEVSKIY, M. S., YESIN, Yu. O., GEL'D, P. V., and SANDAKOY, V. M.

"Effect of Short-Range Order on the Heats of Mixing of Cobalt Melts With Aluminum"

Ordzhonikidze, Izvestiya vysshikh uchebnykh zavedeniy, Tsvetnaya metallurgiya, No 2, 1972, pp 21-25

Abstract: According to earlier research by the same authors, cobalt melts with aluminum represent a system with strong interaction between the particles of dissimilar components which does not follow the regularities of the theory of regular solutions. The thermodynamic characteristics of such alloys can be described only by taking into account the effect of the short range order. This study used this approach to estimate the interatomic interaction energies in molten Go-Al alloys, calculate their heats of mixing at 1670°C, and to provide information on the temperature-concentration dependences of their kinematic viscosity and density.

(3 illustrations, 6 bibliographic references). Tral Polytechnic Institute, Department of Physics

1/1

40

1/2 017 UNCLASSIFIED PROCESSING DATE--230CT70

TITLE-INHIBITION OF THE OXIDATION OF ISOPRENE RUBBER BY QUINONE IMINES

AUTHOR-(05)-RAEVSKIY, A.B., ROMANOVA, A.B., YESINA, T.I., SHISHKINA, V.V., KOVRIZHKO, L.F.

COUNTRY OF INFO--USSR

SOURCE--KAUCH. REZINA, 1970, 29(3), 9-10

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--OXIDATION INHIBITION, ISOPRENE, QUINONE, IMINE, SYNTHETIC RUBBER, EPR SPECTRUM, FREE RADICAL/(U)SKI3 POLYISOPRENE RUBBER

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0453

STEP NO--UR/0138/70/029/003/0009/0010

CIRC ACCESSION NO--APO119389

____UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

TER THE RELEASE REPORT OF THE ENGINEERING THE FOREST THE PROPERTY OF THE PROPERTY OF THE SECOND PROPERTY OF THE PROPERTY OF TH

2/2 017 CIRC ACCESSION	NUAP0119389	UNCLASSIFIED		DATE230CT70
N. N-DIPHENYI	T(U) GP-0-	ABSTRACT. THE A	ADDN. OF SIMILAR	TO 1. OPERCENT
N. BETA , NAPHTH	YL.P.BENZOOUT	NUNEULINING (I) OK	TC CUI o Inc	
4. 50 111036011	SHOWED IMAI L	AND II CODM . The second	T 41 (5) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E RADICALS OF
FACILITY:	VORONEZH. F	TITAL VEES MAUGI		
IM. LEBEDEVA,	VORONEZH, US	SR.	122FEN. 1M21	SIN. KAUCH,
			* .	
				1
				•
Andrews Communication (Communication Communication Communi				
		LASSIFIED		

Magnetohydrodynamics

'USSR

UDC: 533.951

YESIPCHUK, Yu. V., MOROZOV, A. I., TILININ, G. N., TROFIMOV, A. V.

"Fundamental Properties of Plasma Oscillations in an Accelerator With Closed Drift and Extended Acceleration Zone"

Leningrad, Zhurnal Tekhnicheskoy Fiziki, Vol 43, No 7, Jul 73, pp 1466-1473

Abstract: The authors investigate oscillations in an accelerator with closed drift and extended acceleration zone. It is shown that oscillations with a fairly high amplitude level are set up in all investigated working modes. The two main types of instabilities having the highest amplitudes are studied. It is shown that in the case of easily ionized working substances, modes with one or the other type of instability — ionization or drift — can be independently realized. Previous studies have shown that conductivity ancmalously high compared with Coulomb conduction is observed acceleration zone. Based on available data it may be stated that this conductivity is caused by buildup of oscillations in the accelerator, the main contribution apparently coming from transverse amplitude electric fields. Electron drift in crossed electric and magnetic fields intensifies

1/2

USSR

YESIPCHUK, Yu. V., et al., Zhurnal Tekhnicheskoy Fiziki, Vol 43, No 7, pp

transverse diffusion. In previous work transverse conductivity had been connected only with an ionization wave. It is shown that in many modes of operation without an ionization wave, in which drift oscillations are the fundamental waveform, the conductivity across the field is still several orders of magnitude higher than Coulomb conduction. It is hypothesized that the mechanism responsible for both ionization and drift instability may be oscillations with a frequency close to the electron cyclotron frequency.

2/2

- 36 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

UNCLASSIFIED PROCESSING DATE--27NDV70
TITLE--REFLEX MECHANISMS OF SALIVARY GLAND AND KIDNEY FUNCTION

CORRELATIONS -U-

AUTHOR--YESIPENKO, B.YE.

COUNTRY OF INFO--USSR

SOURCE--FIZIGL ZH SSSR IM I M SECHENOVA 56(1): 95-101. ILLUS. 1970

DATE PUBLISHED----70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--SALIVARY GLAND, KIDNEY FUNCTION, DIET, URINE, REFLEX

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3005/1360

STEP NO--UR/0239/70/056/001/0095/0101

CIRC ACCESSION NO--APOI33312

CIRC ACCESSION ABSTRACT/EXTRAC	T (U) GP-0	L ARSTDACT TAL	EVOCO LUCKES ON A	PROCESSING DATE27NOV70 ERIMENTS ON 5 DOGS, SALIVARY	
URINE PRODUCT	TION WAS STI	MANALED BA VALLER MANALED BA VALLER	DING MEAT BISCUL	T POWDER.	
		THE EXPERIMENTED THE FUNCTIONAL REL			
DEPENDENCY OF	THE RECIPRO	NO SOURCESTED NOT	UNLY A REGULATOR	Y BUT ALSO A	
ACAD. SCI. UK	10149	Δ1. 1 1 1 Y •	A. BOGONOLETS IN	ST. PHYSIOL.,	
				* *	
5. 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
후 최고하는 것 같다. 그리 콜라이					
설립하는 것이 되었다. 설립적으로 하고 있는 것이다.					
 	: U;	MCLASSIFIED			

USSR

CHEBURKIN, A. V., STEFANI, D. V., LEHEDEVA, N. N., YESIPENKO, N. V., and IL'CHENKO, T. P.

"Immunoglobulins in Nasal Secretions of Smell Children"

Vopr. Okhrany Materinstva i Detstva (Problems of the Protection of Motherhood and Childhood), 1973, No 7, pp 53-57 (from RZh - Biologicheskaya Khimiya, No 22, Nov 73, Abstract No 1704)

Translation: By the method of simple radial immunodiffusion it is not possible to determine secretory immunoglobulins in the washout of nasal secretions of one month old babies. After the age of 2 months a small quantity of immunoglobulins of the class A and G are found. From the six months on — the level of IgA is increased, while IgG remains quite low, increasing slightly with age. The immunoglobulins of the class M in nasal secretions are absent in small babies. High individual fluctuations of IgA may be explained by the lability of the system of local immunity. The results obtained support the point of view of the local synthesis of class A immunoglobulins.

1/1

USSR

UDC: 621.391.81

YESIPOV, R. A.

"Effect Which the Shape of Probing Signals has on the Resistance to Interference of Resolution in a Generalized (Four-Parameter) Radio Channel in the Case of 'Colored' Noise"

Tr. Kuybyshevsk. aviats. in-t (Works of the Kuybyshev Aviation Institute), 1970, vyp. 44, pp 144-152 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6A77)

Translation: The problem is solved for two detection methods: the method of detection in the presence of interfering signals close in structure to that being detected, and the method based on suppression of interfering signals by appropriate shaping of the reference voltage of the receiver. Expressions are derived for the probability of error and the probability of a false alarm. It is shown that in the case of detection with complete suppression of interfering signals, resolution is poorer than with detection against a background of interfering signals. Two illustrations, bibliography of seven titles. N. S.

1/1

en de la companya del companya de la companya del companya de la companya del companya del companya de la companya del compa

USSR:

UDC 621.391:519.2

YESIPOV, B. A., KLOVSKIY, D. D.

"Problems of Conjunction of the Theory of Optimal Reception and Signal Synthesis"

Radioelektronika v nar. kh-ve SSSR. Ch.1 - Sb. (Radio Electronics in the National Economy of the USSR. Part 1 -- collection of works), Kuybyshev, 1970, pp 81-90 (from RZh-Radiotekhnika, No 4, Apr 71, Abstract No 4A77)

Translation: The possibility of simultaneous optimization of the signal transmission and reception operations by selecting the shape of the emitted signals is investigated. A method of combining the operations of transmission and reception for random signals is demonstrated. There is 1 illustration and a 2-entry bibliography.

1/1

-36-

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

THE THE TREE TRANSPORT OF THE RESTREET FROM THE PROPERTY OF TH

UDC: 543.222.2

YESIPOV, I. B., NAUGOL'NYKH, K. A., Acoustics Institute, Academy of Sciences of the USSR, Moscow

"Concerning the Expansion of a Spherical Cavity in a Liquid"

Moscow, Akusticheskiy Zhurnal, Vol 18, No 8, Apr-Jun 72, pp 233-238

Abstract: An approximate analytical solution is found for the Kirkwood-Bethe equations for the problem of expansion of a spherical cavity in a
liquid. The characteristics of the resultant pressure wave are determined.
The solutions found are compared with the results of numerical integration
of the initial Kirkwood-Bethe equations on a digital computer.

1/1

UNCLASSIFIED PROCESSING DATE--20NOV70

TITLE--EFFECT OF SAMPLE INHOMOGENEITY ON THE BEHAVIOR OF THE
SUSCEPTIBILITY OF THE SYSTEM NEAR THE CRITICAL POINT -U-

AUTHOR-(02)-YESIPOV. V.S., MIKULINSKIY, M.A.

CCUNTRY OF INFO-USSR

SOURCE—ZHURNAL EKSPERIMENTAL NOY I TEORETICHESKOY FIZIKI, 1970, VOL 58, NR 6, PP 2170-2183

DATE PUBLISHED----70

SUBJECT AREAS-PHYSICS

TOPIC TAGS-MAGNETIC SUSCEPTIBICITY, FIELD THEORY, THEORETIC PHYSICS

CENTRGL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/1692

STEP NO--UR/0056/70/058/006/2176/2183

CIRC ACCESSION NO-AP0120404

UNCLASSIFIED

2/2 015 UNCLASSIFIED PROCESSING DATE-- 20NOV70 CIRC ACCESSION NO--APO120404 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. BY THE SELF CONSISTENT FIELD THEORY METHOD IT IS SHOWN THAT INHOMOGENEITY OF THE SAMPLE APPRECIABLY AFFECIS THE BEHAVIOR OF THE MAGNETIC SUSCEPTIBILITY NEAR THE CRITICAL POINTS AT THE POINT T SUBCLAT WHICH SINGINITE REGIONS WITH A STABLE ORDER PARAMETER ETA ARISE, THE SUSECPTIBILITY POSSESS A WEAK UNOBSERVABLE NONANALYTICY. AT THIS POINT THE MEAN VALUE OF ETA OVER THE SAMPLE IS ZERO. AT THE POINT T SUBCZ, IN WHICH A NONVANISHING ORDER PARAMETER THROGHOUT THE SAMPLE ARISES, THE SUSCEPTIBILITY IS INFINITE BUT THE PEAK WIDTH IS VERY SMALL. FACILITY: INSTITUT FIZIKO-TEKHNICHESKIKY I RADIOTEKHNICHESKIKH IZMERENIY. -UNCLASSIFIED-

USSR

UDC 616.981.551-092.9-07:616.24-005-

KRYZHANOVSKIY, G. N., YESIPOVA, I. K., and KRANCHEV, A. K., Institute of Normal and Pathological Physiciogy, Academy of Medical Sciences USSR, Moscow

"Changes in the Microcirculation of the Lungs in Experimental Tetanus"

Moscow, Byulleten' Eksperimental'noy Biologii i Meditsiny, No 1, 1973, pp 78-83

Abstract: At the height of tetamus, ascending or hamatogenic, induced in rats by intramuscular or intravenous injection of lethal doses of the toxin, light microscopy revealed the following changes in pulmonary tissue: marked dilatation of the alveolar capillaries with numerous erythrocytes and indications of diapedetic bleeding; hemorrhages into the lumens of the bronchi; dilatation of the lumens of the lymphatics; contraction of the smooth miscles of the small veins; foci of atelectasis alternating with foci of ectasia. Electron microscopy revealed the following in the lungs of infected mice: alteration of the ultrastructure of the alveolar capillaries and formed blood elements; local destruction of the external cytoplasmatic membranes of endothelial and small alveolar cells, erythrocytes, leukocytes, and thrombocytes; formation and disintegration of vesicles on the surface of the endothelial cells; both vacualation of erythrocytes and their gradual or instantaneous disintegration 1/2

USSR

KRYZHANOVSKIY, G. N., et al., Byulleten' Eksperimental'nov Biologii i Meditsiny, No 1, 1973, pp 78-83

into spherical fragments in the lumens of the capillaries. No signs of inflarmation were noted except in two animals successfully treated with tetanus antitoxin and later sacrificed (both showed symptoms of serous-hemorrhagic pneumonia and bronchitis).

2/2

- 52 -

1/2 026 UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--THE MENINGEAL SYNDROME IN DISORDERS OF CEREBRAL CIRCULATION -U-

AUTHOR-(03)-MARTYNOV, YU.S., YESIPOVA, I.K., KHOKLOV, YU.K.

COUNTRY OF INFO--USSR

SOURCE-ZHURNAL NEVROPATULOGII I PSIKHIATRII IMENI S. S. KORSAKOVA, 1970, WOL 70, NR 5, PP 702-708 DATE PUBLISHED----70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--CEREBRUM, PAIN, BLOOD CIRCULATION, HEMORRHAGE, THROMBOSIS

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--1996/0227

STEP NO--UR/0246/70/070/005/0702/0708

CIRC ACCESSION NO--APO11748L

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"

PROCESSING DATE--160CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APO117481 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE AUTHORS STUDIED CLINICALLY THE FEATURES OF 22 MENINGEAL SYMPTOMS (PAIN AND TONIC) IN 513 CASES WITH DISORDERS OF CEREBRAL CIRCTHE AGE GROUP FROM 16-89 YEARS. AMONG THESE CASES 317 HAD ISCHEMIC SOFTENINGS, 189, HEMORRHAGES AND 7, STROKES OF A COMBINED CHARACTER. THE CHARACTER OF THE PROCESS IN 96 CASES WAS CONFIRMED ANATOMICALLY IN THE REMAINING CASES BY A CLINICAL DEVELOPMENT AND LUMBAR PUNCTURE. THE MENINGEAL SYNDROME IN HERORRHAGIC STROKES WAS SEEN APPROXIMATELY IN TOPERCENT OF THE PATIENTS, IN THROMBUEMBOLIZATION. IN SOPERCENT, IN NUNTHROMBUTIC SOFTENINGS, 30PERCENT, IN THROMBOSIS, IN 15PERCENT. IN ALL FORMS OF STROKES THE MOST FREQUENT SIGNS WERE KERNIGS SYMPTOM, OCCIPITAL RIGIDITY, THE LOWER SYMPTON OF BRUDZINSKI, THE MANDIBULAR SYSMPTOM OF BEKHTEREY, PAINFUL POINTS OF KEHRER, MENDELS SYMPTOM, PHOTOPHOBIA. THE ORDER OF APPEARANCE OF MENINGEAL SYMPTOMS IS THE SAME FOR THROMBOEMBOLIZATION, NONTHROMBOTIC SOFTENINGS AND THROMBUSIS, AS WELL AS FOR HEMORRHAGES. THE FIRST TO APPEAR WAS THE OCCIPITAL MUSCLE RIGIDURY, THE MANDIBULAR BEKHTEREV SYMPTOM, KERNIGS SYMPTOM AND THE LOWER BRUDZINSKI'S SYMPTOM. IN HEMORRHAGES, ESPECIALLY SUBARACHNOIDAL AND SUBARACHNOIDAL, PARENCHYMATOUS, THE MENINGEAL SYMPTOMS APPEAR EARLIER AND ARE MURE EXPRESSED. KAFEDRY NERVNYKH BOLEZNEY I PATOLOGICHESKOY MORFOLOGII UNIVERSITETA DRUZHBY NARODOV IM. PATRISA LUNUMBY, MUSCOW.

UNCLASS IF IED

1/2 028 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--SYNTHETIC REGULAR POLYTRIPEPTIDES AND PROTEINS OF THE COLLAGEN
CLASS -U-

AUTHOR-(05)-ANDREYEYA, N.S., YESIPOVA, N.G., MILLIONOVA, M.I., ROGULENKOVA, V.A., TUMANYAN, V.G.

COUNTRY OF INFO--USSR

SOURCE-BIOFIZIKA 1970, 15(2), 198-205

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES, CHEMISTRY

TOPIC TAGS-PEPTIDE, CHEMICAL SYNTHESIS, GLYCINE, AMINO ACID, COLLAGEN, X

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/0918

STEP NO--UR/0127/70/015/002/0198/0205

CIRC ACCESSION NO--APOL29983

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710008-8"